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1.0 SUMMARY

Processand materialdevelopment w(,,'kand rigevaluationswere undertakento

determine the effectsof the bond coating depositionprocess,bond coating com-

position,ceramic coatingcomposition,ceramic thickness,and substratecomposition

on the durabilityof thermal barriercoatings(TBCs). Cyclic furnacetests_nd ri_

,, exposure testswere used to quantifythe effectof each coatingvariationon t,Je

_" lifetimesof TBCs. The relativerankingsof the coatingvariationsinvestit_ate(_are

shown in Figurei. The most durablecombinationof TBC variationsinvestigatedwas

an 8 w/o Y203-ZrO2 ceramic layerdepositedby an airplasma sprayprocessover a Ni-

22Cr-10AI-IYbondinglayerdepositedb:_a low pressureplasma sprayprocess.

Physicaland mechanicalpropertieswere determined for the coated material

system as well as for both free-standingNiCrAIY and ceramic. The free-standing

ceramic strain-to-failwas determined to be about 0.071% which is in contrastto

compressiveand tensilestrain-to-failof about 0.78% and 1.4%, respectively,fora

ceramic coatingbonded to a metal substrate. The cohesivestrengthof the free

standingceramic materialas determinedby fourpointbend testsisabout33.0MN/m 2

(4.79ksi)which isclosetothe measuredbond strengthof 36.5MN/m 2 (5.29ksi)at the

NiCrAIY-ceramic interface. The mechanicalproperty determinationssuggestthat

TBCs are not limitedby mechanicalstressesper se but ratherby degradationof the

adhesivestrengthby environmentalinteractions.

A parametricanalysiswas made of the effectsof applyingthe thermal barrier

coating to CF6-50 stage 2 high pressureturbineblad_:s.The computer analysis

examined the resultantchanges in the mean bulk temperature,coolingairrequire-

ments,and bladeruptureand low-cyclefatiguelife.With a thermalbarriercoating,

the eoolingflow to thisbladecould be reduced to about 50% of the originalvalue,

while maintainingthe bulk metal temperature of the uncoated airfoilas shown in

Figure2. This reduced flowalsomaintainslow-cyclefatigueand creep ruDturelife.

However, the model predictedthat localspallationof TBC from the leadingand

trailingedges of a fullycoated blade could reduce the low-cyelefatiguelife30%

below that of an uncoated blade. An advanced blade eoneept was developed which

would derive maximum benefit of TBC in terms of reduced airfoil air cooling [iow, and

would limit the TBC bond coating temperature to below an assumed design tem-

perature limit of 982°C (1800°F). This new blade design calls for an airfoil fully

coated with a TBC except at the trailing edge region. The required redi,_tribution of

the cooling air assumesa reliable TBC system. 5

1
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Twenty engine quality CF6-50 stage 2 high pre.ssureturbine blades shown in

Figure 3 were coated with TBC. Engine qualificationtestingshovled that the high

cycle fatigue lifeof the coated blades was about 13% lower than the mean value of

uncoated blades. Six blades were engine tested for 626 15-minute endurance cycles.

The engine testsproved that the TBC could remain adherent in an engine environment:

however, the relativelack of abilityof the TBC to resistforeignobject damage was

,, identifiedas a possible limitationto the implementation of TBCs on high pressure

turbineblades.

2
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2.0 INTRODUCTION

For the past two decades aircraftjet engineturbineinlettemperatureshave

been continuallyincreasedtoimprove engineefficiencyand aircraftthrust-to-weight

- ratios. These higher inlet temperatures have been the driving force for the

. development of higher temperature blading alloys and improved environmental coating ,

compositions and processes. One of the more recent advances in coat_.g technology

has been the development of thermal .)artier coatings which can provide both thermal

and oxidation protection to air cooled airc' _ft gas turbine hot-section components.

A thermal barrier coating (TBC) is a surface layer of a low thermal eonduetivity

material applied to the hot side of a cooled metal structure to lower the temperature

of t;,e metal. Alternatively, the ilLsulative coating could maintain the substrate at a •

desired temperature with less cooling. Oxides have generally been considered as prime

thermal barrier candidates because of their chemical stability, relatively t_w thermal

conductivity, end high temperature capability. Stabilized zirconium oxide has been

identified as a suecessful oxide eandidate. It has been de[,_c -tre'(ed tltat the adhesion

of the oxide layer can be substantiaUy improved if _ intermediate bonding layer is

applied between the oxide and substrate. Historically, MCrAIY (where M = Ni, Co, Fe

or eombinetions of these elements) bonding layers have been found to be most
x

suceessful, primarily because of ;.heir exeeUent oxidation resistanee at superaUoy use

- temperatures. The ZrO2 and MCrAIY-bond coatings have been identified as the choice
for TBCs.

Plasma spray processing has historieeily been the most successful techniqtm for

the deposition of the coatings. Plasm_ _pra)_.ng is a _)roeess in which a high-intensity

direct current arc heats and ionizes plasma gases (N 2, At, He, H2) that are expanded

through a nozzle to form a high-temperature jet. Powder particles suspended in an

inert carrier gas are injected into the high-temperature jet where they are entrained

in the flow, reel.ted, and propelled to a substrate where they subsequently impact and

solidify. For some plasma spray systems the arc |et is expanded in air, and foe, other

systems the jet b exp_nded into _ low-pressure (40 tort) inert environment provided by

a vacuum chamber. In the tatter case, metallic deposits have been found to be more

dense and more free of oxide than deposits made in air.

Past work has feeused primarily on th," efieets _f bored-costing composition and

ceramic composition _ the cyclic lifetimes of TBC._,. Studies (l) have evaluated TBC

durability _Ith eyelle furnace tests, trainer rii_ teJt. _tgh velocity rig tests as well as

3 /
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researchenginetests.(2) Analyticalstudieshave indicatedthe potentialbenefitsof

applyingTBCs tocombustors,blades,and vanes.At presentthe primarybarrierto the

implementationof TBCs in aircraftenginesisinadequateconfidencein the coatings,

largelybecause of the inabilityto predicttheir failureas a functionof time,

temperature,and strainrange.

Accordingly,the objectivesof thisprogram were to develop materialcom-

positions,process,and designguidelinesto es_._blishthe technicalfeasibilityof using

thermal barrier coatings advantageously on high-pressure turbine aircraft engine

blades. This feasibility would be established on the basis of materials and process

screening studies, rig exposure tests, thermal and stre._ analyses, and parametric

trade-off studies. Figur_ 4 is a flow diagram of the program, which consisted of three

parallel efforts in materials/process development, mechanical properties evaluation, !

and analysis/design.

The materials/process development effort began with a series of screening

studies which evaluated the effect of bond-coat composition, bond-coat proeesjing

technique, ceramic composition, substrate composition, ceramic thickness, and bond-

coat pretreatment on the lifetimes of TBCs. The durability of the TBC variations

investigated were evaluated with a cyclic furnace test, and the co, tings were

characterized using a microstructural evaluation, x-ray diffraetio_, and electron

microprobe. The three best combinations of TBC variations were further evaluated in

hot-corrosion and oxidation rig tests to determine the single best eoating combination.

Finally, techniques for the coating of blades _ere developed and evaluated.

The physical and mechanical property measurements constituted another major

block of work. Measurements included Young's modulus, compressive/tensile strain-

to-fail, adhesive strength, thermal conductivity, and thermal expansivity measure-

merits of the various constituent coating systems. The physical/mechanical property

determinations provided a starting point for the analysis/design efforts.

The analytical design study was performed on a CF6-50 stage 2 high-pressure

turbine blade even though stage 1 blades would probably benefit more from a TBC

because they are subjected to higher heat fluxes. The stage 2 blade has the advantage

of a larger size (-4 in. airfoil length versus -2 in. airfoil length), and a less complex

cooling geometry (stage 2 blades do not have film cooling holes on the airfoil surface).
?

By introducing the best available values for the physical and mechanical properties,

: heat transfer and stress analyses of the blade with and without a TBC were performed.

From these analyses life predictions were made. These data provided the basis for

evaluating the payoffs of TBCs and for designing a modified blade which incorporates

the new data on mechanical properties and composition/process development.

4
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_- The three pelrallel prot_ram efforts eulmin,,lted with tile coaling of blades0 and

finally with tile engine ie._iinl_ of the eo_ltecI blades.

5
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' 3.0 MATERIALS DEVELOPMENT AND CHARACTERIZATION

At the start of this materials study it was known that a NiCrAIY bonding layer

, applied over the structural metal substrate is a key factor to the sueee,_ of the 'rBo

' system,and that itscompositionand method of applicationare _mportantvariables.

Similarly,the compositionand structureof the thermally insulatingZrO2 solid

solutionsare alsoimportant. There was concern over tilemagnitudeof the thermal

expansion mismatches and expected resultantstresses. Consequently,additional

physicaland mechanicalproperty informationwas requiredby designers,especially

with respect to strength, failure criteria and thermal properties.

Accordingly the efforts described in detail below were undertaken to identify

effective plasma spray procedures for the metal and ceramic layers. Several oxide

and NiCrAIY compositions, previously identified to be promising, were systematically

compared, along with the procedures for their application. Laboratory furnace cycling

to 1000°C and ll00°C followed by microstruetural examination were used to identify

the most promising combinations. These selected combinations were then further

studied in rigs that more closely simulated aircraft engine oxidation conditions, and

that could provide an indication of hot corrosion performance. Representative

mechanical and physical properties were determined to provide engineering and design

inform ation.

3.t Plasma Spray Process

Two plasma spray processing techniques were evaluate, ,n these studies. One

process was performed in air, and the low pressure high velocity (LP/HV) process was

performed in a reduced-pressure inert environment.

A Metco 3MB plasma .spray gun was used for depositing ceramics and metal-bond

coatings in air. However, prior to coating by either plasma spray process, metal

substrates were routinely grit-blasted with 60 mesh pure white Al203 at a pressure of

40 psi. The substrates were then degreased and ultrasonically cleaned in a freon

solvent to remove any embedded grit. The air process utilized argon as a primary gas

and hydrogen as a secondary gas. Typical gun operating conditions for depositing

: ceramic and NiCrAIY coatings were:

i Volts-52

; Amperes-550

Primary Gas-Argon 150 SCFH at 95 psi

; 6
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' Secondary Gas--tl 2 15 SCFH at 55 psi
,' ?

Powder Carrier Gas-Argon 25 SCFH

NiCrAIY Feed Rate-700 g/h

" Ceramic Feed Rate-l,250 g/h

Gun-to-substrate distances during coating deposition were maintained at about 7

r to 10 e,n for Y203-ZrO2 coatings, 11 to 14 em for MgO-ZrO 2 coatings, and 11 to 14
em for NiCrAIY coatings. A plasma spray powder size of -200 + 325 mesh sizing (44-

74 lam diameter) was used for the air proeem.

The LP/HV plasma spray system was obtained from Electro Plasma, lne, (EPI)

and used argon as a primary gas and helium as a secondary gas. Only NiCrAIY

coatings could be successfully applied with the LP/HV process; ceramic coatings were

found to have poor adhesion. Typically, the plasma gun was operated at 1300 amperes

and 55 volts at a residual pressure of 50 tort and a gun-to-substrate distance of about

32 era. Prior to coating, the substrate was preheated to about 800-900 °C by passing

the are over the substrate repeatedly. Reverse tJ'ansfer are treatment was used to

remove possible residual oxides on the substrate surfaee. Plasma spray powders used

in the LP/HV system had a sizing of -400 mesh.

3.2 Physical Property Determination

Mechanical and thermal measurements were made on the oxide layer, the

NiCrAIY bond-coat layer, and on TBC material combinations primarily to provide

input information for the analytical studies. Accordingly, the intent was to obtain

representative information, rather than comprehensive data, early in the program

whieh would include the property dependenee on temperature, eomposition, geometry,

and proeessing variables.

The meehanieal measurements consisted of bend-strength measurements on free-

standing plasma-sprayed 24 w/o MgO-ZrO 2 material, and on the same oxide when
applied to a NiCrAIY-eoated Hastelloy X base. hi the latter ease aeoustie emission

observations were also made. The thermal expansivi_.y of eaeh of two bond-eoat alloys

was determined over the range from room temperature to 1100 °C. (Other data for

the structural alloys and for the oxide coating materials was available from previous

work.) Finally, the thermal diffusivity and the derived thermal eonduetivity of plasma-

sprayed 8 w/o Y203-ZrO2 and 12 w/o Y203-ZrO2 oxide layers were measured to

, II00 °C. Adhesive strength of 12 wlo Y203-zrO2, plasma-sprayed onto the bond-
coat/base metal combination was determined by a direct pulloff method. The Young's

moduli of Ni-16Cr-6AI-0.$Y and of Ni-22Cr-10AI-IY were measured at 20 °C. In the

i '
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,. caseof the latteralloy,thesemodulusmeasurements were extendedup to8f10°C, and

tensilestrengthdeterminationswere performed over the range of 500 to II00°C in

vacuum. The detailsof thiswork follow.

3.2.1 Flexural Strength of Oxide Coatings

These tests were all performed at 20 °C using a four-point bend eon-

figuration,havingan innerspan of 2.54cm and an outerspan of 5.08era. The

_ oxideinallcaseswas 24 w/o MgO-ZrO 2 and was appliedby the usualairprocess.

However, in one testthe oxidewas free-standingand was builtup on a copper

substrateto a thicknessof about 1.5mm at which valuethe ceramic spelledas

an intactsheet. For most teststhe oxide was appliedonto a HastelloyX

substratewhich, in turn,had been coated previouslywith Ni-22Cr-10Al-IYby

theairplasma spraymethod. The thickne_ of the adherentoxidelayerswas of

the orderof 0.041cm. The specimens were allabout 2.54em wide. Most bend

testswere monitoredacousticallywithan Enclevo223C accelerometerat an 80

dB gainsetting.Insome testsstraingages were affixedto theTBC surfacefor

monitoringthe low-strainregionof the deformation. Testsperformed were of

three types: (I) free-standingTBC (no substrate),(2) TBC on substratein

tension,and (3)TBC on substrateincompression.

(I) Free-standingMgO-ZrO 2. The average bend strengthof free-standing

24 w/o MgO-ZrO 2 is33.0 MN/m 2 (4.79ksi)(averageof two tests)and the

elasticmodulusisabout 46.2(6.70x I06psi)GN/m 2. Poisson'sratiohasan

extraordinarilylow valueof 0.076. There isalsopseudo ductilitypresent,

as manifestedby a nonlinearstress-straincurveas shown in Figure5. Itis

believedtheselattertwo phenomena are related;theTBC materialcan be

considereda collectionof weakly bonded cracked "tiles."The pseudo

ductilityisdue to the cracksopening up,and the low Poisson'sratioisa

manifestationof the material'sdifficultyin deforming laterallybecause

the cracks can accommodate the deformation.

One further item of information ean be gained from these free-

standing tests (Figure 6). An appreciable amount of acoustic activity

attributable to large scale crack growth indicates failure. As will be seen

below, this is not the case when a substrate is present.

: (2_ MgO--ZrO2 on substrate in tension. The most striking difference between
the TBC on a substrate relative to the free-standing is that complete

failure is not observed in tension. Rather, eraeking is initiated in the

8
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eoating soon after the onset of plastie flow in the metal substrate. Several

tests were conducted by unloading the speeimen after aeoustie emissions

were detected. Generally, eraeks were not visible when examined under a

mieroseope until extensive eraeking was measured by the acoustic emission

system (Figure 7). Aeoustie emissions were not deteeted in any appre-

• eiable amounts until the previous unloading point was reaehed. This is

_, known as the Kaiser effect and is eommon to most materials loaded in a

similar manner.

Strain values in the coating were estimated by measuring the radius

of curvature. Because we are dealing with a composite beam composed of

two materials with differing meduli, the simple equation, _ - t/2p, where

c is the strain, t the thickness, and p the radius of curvature, is not

strictly aoplieable because the neutral axis is no longer at the eenter of the

beam. A correction (3) ean be made, and with typical material properties

and dimensions the neutral axis differed by 15% from that obtained from a

t/2 ealeulation.

Several low-strain regime tests were also conducted with strain gages

affixed to the 24 w/o MgO-ZrO 2 (Poisson's ratio was not measured). One

such test is shown in Figure 8; this speeimen had been furnaee eyeled 50

times (S rain heat up to 1000 °C, 40 rain hold at 1000°C, air blast eooled to

140 °C in 14 rain). No differenee in mechanieal behavior was noted before

and after thermal eyeling. The stress was ealeulated as described in the

above referenee. This involved treating the material as a "T" beam,

eonsisting of a lower (tension side) section 2.57 em wide (the original

specimen width) and 0.041 em deep, and an upper seetion 12.9 em wide and

0.173 em deep. [ The ratio of the two widths is the ratio of the respective

moduli of the MgO-ZrO 2 and metal, taken as 41.3 and 20'/ GN/m 2 (6.0 x

106 and 30 x 106 psi), respectively.] The modulus ealeulated in this

manner, 30.3 GN/m2(4.39 x 106 psi), is not considered unreasonable when

material and dimensional uneertainties are eonsidered. Two load-unload

eyeles were performed, and as in Figure 8 elastie behavior was observed up

to the previous unloading point. This, of eourse, is expected for a system

mechanically dominated by the metal. The measured strain to fail for the

eeramie in tension was 1.4%. Failure occurs by pronouneed open creek

formation, but even then the TBC remains adherent.

9
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(3) MgO-ZrO2on substratein compression. When the TBC on the substrate
was in compression,a strainon the orderof 0.78% was requiredto cause

failurein the TBC. As in the tensioncase,acousticemissionactivitywas

._ detectedpriorto visuallydetectinga crackby load-unloadtest_.Failure,

when itdidoccur,was catastrophic,with the TBC materialshatteringinto

smallfragments.
¢

The stress-strainbehavior in compression,obtained in a similar

• manner to the tensilecase and shown in Figure9. showed the composite

beam was strongerwhen the coatingwas in compression than when in

tension.Modulivalueswere similarand withinthe limitsof the accuracy

of thecalculation.

3.2.2Ceramie/NiCrAIY AdhesionStrength

Teststo determinethe adhesivestrengthof the bond between the ceramic

and NiCrAIY bond coat were performed with alignedpullrods in an Instron

machine. Small discs(earlier,small plateswere used) 1.22 cm (0.480in.)in

diameterand 1.9:mm (0.075in.)thickwitha 0.38mm (0.015in.)layerof 12 w/o

Y203-ZrO2 were placedbetween the pullrodsand bonded to them witha filled

epoxy. The assemblywas curedin placewitha heat gun to acceleratethe cure.

Aftercuring,thespecimen was pulledto failureintension.

Mixed-mode fracturesoccurred(partadhesiveand cohesive).These types

of fracturesprevent a reliableestimate of the ceramic/bond coat adhesive

strength.However, the resultsprovidean estimateof the lower-limitstrength

of thisinterface,which is36.5MN/m 2 (5290psi).

3.2.3 Mechanical Properties of NiCrAIY Bond Coat

A brief investigation of the meehanieal properties of the NiCrAIY bond

coat was conducted because of its importance in transferring load from the

ceramic TBC to the metal substrate. About 3.2 mm of Ni-22Cr-10Ai-lY and Ni-

16Cr--6AI--0.SY alloys were deposited on 304L stainless steel by the LP/HV

process. Mechanical test specimens were maehined from the eenter of the

NiCrAIY layers in the form of 3.2 mm x 3.2 mm x 38.1 mm bars for modulus

determination. The room temperature elastic mc_'luluswas determined for both

materials with an ultrasonic puls=,echo technique, and the effect of temperature

on the elastic modulus was studied for the Ni-22Cr-10AI-l¥ bond coat. (The

temperature-dependence of the NI-t6Cr-6AI-0,SY bond coat is expected to be

simlllar.)

10
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At room temperature the measured values of the elastic moduli were 198

GN/m 2 (28.7x 106 psi)forthe Ni-22Cr-10Al-IYand 164 GN/m 2 (23.7x 106 psi)

for the Ni-16Cr-6AI-0.SYmaterials. The elasticmodulus as a functionof

temperaturefor the Ni-22Cr--10Al-IYcompositionisshown in Figure10. The

inflectionin the curve in thevicinityof 600 °C may be due to the formationof

CrNi3 which hasbeen reportedinthe Cr-Ni-AIsystem.(4) Whatever the cause,a

structura) change, not detectable in the expansion data, apparently occurs in this

alloy in the vicinity of 600 °C. Tests were terminated at 800 °C because of the

excessive attenuation of the ultrasonic signal at higher temperature.

For the tensile strength measurements a relatively thick coating of

NiCrAIY with the composition Ni-22Cr-10AI-1Y was sprayed onto a 304L

stainless-steel substrate. Sub-size, pin-loaded, flat specimens were machined

from the center of this coating. The specimens were 2.86 cm long, 1.59 mm

thick, and had a gage length of 6.35 rnm. A total of eight specimens were

machined; two broke during grinding, and one broke during setup, so only five

were finally tested. The specimens were vacuum annealed at 1100 °C, and

tested in vacuum at a cross-head rate of 0.25 ram/rain (0.01 in/rain.), corres-

ponding to an approximate strain rate of 4%/min.

Table I shows the data, and Figure 11 shows the yield strength and ductility

plotted as a function of temperature. The rapid drop in strength and the increase

in ductility may be related to the increased compositional range of the _,' NiAI

phase which begins to occur at about 600 °C. At the use temperature of

approximately 1000 °C, the coating in the as-deposited state is exceedingly

ductile. These data, however, must be interpreted with caution because the

interdiffusion of substrate, bond coat, and TBC constituents which have been

shown to occur during long-time heat treatment at elevated temperature. This

interdiffusion may affect the bond-coat properties, but it still is expected to

behave in a very ductile manner. In any case, modeling its behavior in terms of a

simple elastic stress analysis is inappropriate.

3.2.4 Thermal ExDansivity of NiCrAIY

Thermal expansion measurements were made on Ni-_2Cr-10AI-IY bars

i deposited with the LP/HV process as described in section 3.2.3. The expansion
t

i was measured with a dilatometer between room temperature and 1'100°C fitted

' with alumina fixturing. A heating and cooling rate of ? °Clmin was used with a

; 10 rain hold at 1100 °C. The NiCrAIY sample was a rectangular bar with

11
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,, TABLE I

i:
.P

TENSILE TEST RESULTSAT ELEVATEDTEMPERATUREON Ni-22CR-IOAI-IY

PLASWASPRAYEDBONDCOATAT A CROSS-HEADSPEEDOF 0.91 IN/MIN

L

Ultimate
Test 0 2% Yield Tensile

Temperature Strength Strength % Elongation % Reduction
(oc) MPa (ksi) MPa (ksi) 6.35 mm gage span in Area

500 1140 (165) 1160 (168) 0 0

600 915 (133) 960 (139) 0 0

750 270(39.3) 365(52.8) 34 51

900 49(7.13) 69(10.0) 275 _I00

II00" 16(2.35) 19(2.78) 252 _I00

*Inadvertently tested at 0.I in/min
for most of test.

12

i

1982002167-022



: nominal dimensions of 3.2 mm x 3.2 mmx 38.1 mm and was maintained at a

_" constant compressive stress of 1.5 x 104 N/m 2. Figures 12 and 13 show the

expansion behavior of the NiCrAIY samples studied during two successive runs.

In the first run a net contraction of 0.4% of the sample length, attributable to

sintering in the sample, was observed. This result is in agreement with the

observation that porosity in the NiCrAIY decreased after furnace tests. In the

: second run additionalcontractionwas observed. The average expansionco-

efficientfor the alloybelow I000°C isabout 13.8x 10-6 °C-I and the average

expansionbelow 1200°C isabout 18.3x 10-6 °C-l. Itisevidentfrom Figure13

that a reversibledimensionalchange of about 0.5% occurs in NiCrAIY about

1000Oc.

Ifone refersto the NiCrAI phase diagram,the observedtransformationin

NiCrAIY probablycorrespondsto the transformationof a low-temperaturey'+a

phase fieldtoa _'+6phase fieldat 1000°C, where y' isan orderedNi3AI face-

centeredcubicstructure,a isa chromium, _"isa Ni solidsolutionalloyedwith

Cr and Al,and 6 isa NiAIphasealloyedwithCr.

3.2.5Thermal Pro[_ertiesofOxide BarrierLayer

Two testspecimens each were prepared by air plasma-spraying12 w/o

Y203-ZrO2 and 8 w/o Y203-ZrO2. In the case of tl_ former composition,
samples were made both from eommerical crushed and sie-,ed material and from

an experimental spray-dried material. The free standing ceramic samples had

nominal dimensions of 12.7 mm diameter and 0.63 mm thickness.

Thermal diffusivities of the plasma sprayed ceramic materials were

measured at GE's Thermal Physics and Chemir xy Laboratory, Philadelphia, PA.

The thermal eonduetivity is calculated from the diffusivity using the measured

density and known specific heat.

The sample configuration required for these measurements is a thin disc of

12.5 mm in diameter. The thickness of the disc varied with the conductivity

range of the material tested. The sample is heated at the center of a graphite

tube furnace in an inert atmosphere. One sid_ of the disc is heated with a pulse

from a Nd-glass laser. The laser is an Apollo 3:i which can deliver pulses up to

250 joules with pulse lengths between 0.1 and 1 ms. The temperature of the

other side of the sample is monitored as a funetion of time with an intrinsic

eonttet thermoeouple at temperatures below 200°C and with a radiometrie de-

tector at temperatures above 200°C. This temperature versus time curve is

13
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displayed on an oseilloseope and photographed, and the diffusivity is ealeulated

from this curve, ff no corrections are necessary for radiation losses, the

diffusivity a can be calculated direetly from t0. 5. The latter quantity is the

time required for the temperature of the baekfaee to rise to one-half of the

saturation value aeeording to the following equation in which AX is the speeimen

thiekness:

_¢ a: 1.37(AX) 2 / 2 t0.5

When significant radiation loss occurs (high temperature and high emittanees),

additional data from the temperature versus the time curve are required for the

diffusivity ealeulation.

To prevent tral.smission of the laser pulse through the material front faee,

that surface was opaeified with a thin layer of graphite. Likewise, to prevent

the radiometrie baekfaee temperature detectors from sensing radiation from the

sample interior and front face, that surface was also coated with graphite.

The thermal diffusivity was obtained from two independent runs. A second

run was made to confirm the validity of the measurements at the highest

temperature of interest, 1100 °C. In the first run an attempt was made to

obtain results at 1400 °C. However, in that run the graphite coating appeared to

have been substantially lost, as if oxidation may have oeeuned, although the

inertness of the gas should have precluded that po3sibility. Whatever the reason,

examination of the data indicated that it occurred above 1100 °C. In the second

run, whieh confirmed our analysis, the coating remained intact. The data at

1400 °C are not reported because they are considered to be unreliable. There is

indication that densifieation occurred at this temperature.

Results of the thermal diffusivity and of density measurements made to

compute the conductivity are summarized in Table It In turn, the thermal

conductivity ,_ of the ZrO2 samples was calculated with the measured dif-

fusivity a, the measured density _, and values of speeifie heat ep, according to
the equation.

A =ae p
P

The specific heat values were estimated with a weighted average of the specific

heats of Y203 and ZrO2 at the temperature of interest. Results are presented in
Table Ill.

14

1982002167-024



!
L

TABLE II

THERMAL DIFFUSIVITY DATA

i

Density Thermal Diffusivity (cm2/sec)

Material g/cm 3 40O°C _ 8OO°C llO0°C

IAEE

8 w/o v203-ZrO 2 5.17 .00328 .00326 .00330

AEE

]2 w/o Y203-Zr02 4.43 .00260 .00249 .00263

Spray Dried

I_ w/o Y203-Zr02 4.52 .00255 .00228 .00259

15
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TABLEI I I

CALCULATEDTHERMALCONDUCTIVITY

TEMPERATURE(°C) 400 800 1100

Thermal Conductivity (watts/cm °lJ:

8 w/o Y203-Zr02 .00980 .01038 .01093

12 w/o Y203-Zr02 .00654 .00695 .00733 i

SprayDried 12 w/o Y203-Zr02 .00660 .00706 .00744
L ..
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3.3 Stability of TBC Systems Subleeted to Thermal Cyeling

The TBC systems are composites of alloys and metal oxides, eontaining two

distinet interfaees (substrate/bond c,o_ting, bond eoating/eeramie). The p¢rformanee

of such eomposites is strongly dependent upon the stabihty of the individual mater!als

(i.e., mierostrueture, phase, eomposition) and upon the material interfaces. This

s,_ction describes some of the degradation mechanisms obset 3d in TBC systems after

_ high-temperature exposure during the eyelie furnaee testing.b

3.3.1 C.ltelic Furnace Tests

The thermal shook resistance of TBC systems was investigated with a

cyclic furnace test. Samples were cyclically exposed in a CM1700 Rapid

Temp (TM) furnace whieh is provided with a MoSi2 heating element and with r,

mierop,'oeessor to obtain a controlled (reproducible) temperature eyele. Coated

flat coupons were mounted in a slotted high-purity alumin,_ firebr'iek located at

the bottom of the furnaee. For the first 500 cycles of testing the maximum

temperature of the furnace eyele was 1000°C and for the re,naining eyeles was

l l00°C. An hourly cycle eonsisted of a 5 rain heat up to the maximum

temperature followed by a 40 rain hold. Then the power was turned oft', and

after a eompressed air blast cooling from the top of the furnace for 14 rain the

substrate temperature dropped to 140 °C. Figure 14 shows the measured metal

temperature response of a TBC speeimen.

Figure 15 illustrates a typical coupon for eyclic furnaee testing. The

substrates had nominal dimensions of 3.2 em x 2.0 cmx 0.16 era. The substrates

were eoated on two sides, each side with a different TBC variation. Nominal

NiCrAIY thickness was 0.13 em, and the eeramie eoating thieknesses '_ere eith.,r

0.25 mm or 0.51 ram. The substrate edges were well-rounded but were left

uneoated and exposed during the furnace testing. Table IV lists the average

lifetimes of each coating variation subjected to the thermal cycling just

described. Four samples of each variation were used ,.'nthe computed averages

(Table IV). Initiation of failure was d_fined as the cycle when failure, such as

edge separation or cracking, was first noted. Complete failure was defined as

80% or more coating spallation, in the eireumstanee where one sample of a

particular coating variation did not fail at the end of 858 cycles (test duration),

the coating lifetime for initiation and completion of failure wetsarbitrarily set st

658 eyeles for purposes of averaging. Table V and Figure 1 summarize the

lifetime data of Table IV according to each speelfie type of variation.

17
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:' Tahlt, V shows tim! Ni('rAIY eompesition, Ni('r..XIY dc.position process, and

•: ceramic eompositit)n a fl't_'ted 'i'HC lifetinles most stronRly, and that suhstrate

composition had h,_ effeel. The lifetime differences hetween ceramic thiek-

ne,,,',;es of 11.51 mm and 11.25 Inn] were almost ne_liffihle, l_lased on the

summarmzed result-: in l'able V, the two most durable eoatini_ systems were

; comprised of a Ni-22('r-10AI-IY coat applied by the I,P/IIV process wlth either

_. an 8 or 12 w/o Y203-Zrt) 2 eerami_, e{mting. The 12 wlo Y20.!I-Y, rI'L, coatinl_S
_,

yielded .qbout a 4% greater lifetime thal the 8 w/o Y2()3-ZrO2 eoatin,_,s, hut tile

differenees are n_,t statistieally ,_ignifieanl.

3.3.2 (_t_'ramie ('_ltin_ Phase Stability

I)uring the eyehe furnaee h,sts samples were peri(xlieally taken for x-ray

diffraetien determination of the phases present in tile eccamie eoatings.

l:q_ure Ill sl_ows that the relatwe phase eontenl of the Y2()3-stahilized ZrO.)

r'en_aine_l eonslant at the temperatures investilZated. In eontrnst, the MgO-

stabilized Zr().) developed progressive destabili_',,dioP with time tlt temperature.

It is noteworthy that the partially stabilized plasma sprayed zireontas (8 wlo

Y203-ZrO,, and :'4 w/o MgO-ZrO 2) ill the as-deposited stale are eubie but upon

eyeling become two-phase materials eonsistinff of monoelinie and tetragonal

modifieatitms, whereas the fully stabilized 12 w/o Y203-Zr02 composition was

_ngle plmse with a cubic s_,ruettnre.

3.3.3 Microscopic Evaluation

Mierographs were taken of each eoating variation before trod after eyelie

furnace testing from which a pattern of failure emerged that involves the

interdiffusion between the substrate and tile Ni('rAIY. Figure 17 eontains

mierographs before testing of 24 w/o MIZO-ZrO 2 and 8 w/o Y203-ZrO2 eeramie

eoatintls applied over l,l)/llV-al)plied Ni-22('r-10AI-IY coatings. Some residual

porosity was observed in the Nit'rAIY eoating, and at this stage little apparent

mterdiffusion was seen between the bond-coat and the substrata. Figl'"e 18

shows mierographs of these same coating systems after 658 (furnace test) eyeles.

The 24 w/o MgO-ZrO 2 eoatinq (Figure 18a) eompletely .Q4)alled from the

Ni('rAIY after 517 eyeles, but the 8 w/o Y203-ZrO2 eeramie was still adherent

after 658 cycles (Figure 18b). in Figure 18(a) there is now substantial

interdiffusion of the substrate and bond coating as evidenced by the precipitates

formed in the Rene'80 base alloy, ltowever, in Figure 18(b), there is less

i 19
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TABLE V
>

SUMMARYOF TBC LIFETIME AVERAGES

Variation Lifetime Differences

NiCrAIY Composition Ni-2?Cr-lOAl-IY lasted 33% longer before failure
initiation and 21% longer for complete
failure than Ni 16Cr 6Al O.5Y

Ceramic Composition B w/o YpOR-ZrOp lasted 33% longer before
, failure-i_itia_ion,33% longer before failure

completion than 24 w,'oMgO-ZrO2

12 w/o YpOR-ZrOp lasted 37% longer before
failure _nTtiat_on, 36% longer for failure

completion than 24 w/o MgO-ZrO2........................ 6...........

Deposition Process NiCrAIY coatings applied using the LP/HV
deposition process lasted 31% longer before
failure initiation and 25% longer before
failure sompletion than air applied coating

Substrate Compostion Coatings applied to Ren_ 80 substrates
lasted 19% longer before failure initiation
and 17':,longer before failure completion than
Hastelloy-X substrates

Ceramic Thickness 0.25 mm thick ceramic cJatinqs lasted

5" longer before failure initiation and 5%
longer before failure completion th_n
0.51 mm thick coatings

Note: The severity of the cyclic furnace test was markedly increased
by increasing the maximum temperature from lO00o to llO0OC
after 500 cycles.
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interdiffusion, presumably because of the oxides at the bond coat substrate

" interface. In general, the TBC variations in which the eeramie coating had not

failed after 658 cycles did not exhibit as great a degre_ of interdiffusion

between the NiCrAIY and the substrate as the shorter-lived variations, bl eao!

case the interdiffusion appeared to be blocked by an oxide at the NiCrAIY/

substrate interface. Thus, interdiffusion of the bond coat layer with the

-, substrate may be a life-determining degradation meehanism.

3.3.4 Microprobe Analysis

In an effort to understand any degradation which might occur in TBC

systems during high-temperature exposure, microprobe analyses were performed

on coated Rene'80 specimens before and after cyclic furnace testing describe6

earlier in 3.3.1.

3.3.4.1Pre-ExposureCharacterization

Electronmieroprobemeasurements on Rene'80 eoated with LP/HV-

appliedNi-22Cr-10AI-IYwere made priorto eyeliefurnaeeexposure. On

some samples,the high AI and Ti eoneentrationsat the Rene'80 NiCrAIY

interfaeesuggest that some oxidation(TiO2,AI203)may have oeeurred

duringthe depositionof the NiCrAIY onto the Rene'80 substrate(Figure

19). Varying amounts of NiCrAIY oxidationoeeurred during the air

deposition of the eeramie. In some eases the NiCrAIY/eeramie interfaee

had no detectable excess eoneentration of Al, (Figure 19). In contrast at

other areas of the same sample an Al203 scale (Figure 20) formed on the
NiCrAIY. Thus, under some circumstances the ceramic is adhering to an

Al203 layer and not metallic NiCrAIY.

3.3.4.2 Characterization after 67 cycles at 1100 °C

Microprobe measurements of LP/HV-applied coatings of NiCrAIY and

air-sprayed 12 w/o Y203-ZrO2 on Rene'80 substrates after oxidation
testing show that the Rene'80 and NiCrAIY have interdiffused and become

eompositionally very similar. Except for compositional fluetuations at

preoipitate inclusions, the uniformity of the Cr, Ti and Al content of the

substrate and the NiCrA!Y coating in the vicinity of their original

separating interface is shown in Figure 21. This is also apparent in Table

VL However, Y shows no evidence of lnterdiffusing into the Rene'80,
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TABLE VI

AVERAGE COMPOSITION OF RENE 80 AND NiCrAIY
BEFORE AD:DAFTER 57 ONE-HOUR CYCLES OF OXIDATION

L'

Ren( 80 NiCrAIY
Before After Before After

Ni 62.0 , 0.4 64.2 _ 1.0 66.0 _ 1.0 65.2 _ 1.0

Cr 14.1 + 0.3 17.4 _ 0.75 21.9 _ 0.5 19.6 0.4

Al 3.5 _ 0.2 4.7 * 0.4 I0.3 _,0.2 4.4 _ 0.2

Y 0 0 1.3 * 0.3 0.8 * 0.6

Ti 4.5 * O.l 2.9 + 0.7 0 2.3 _ 0.6

J
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although it does seem to concentrate at the Al203 scale on the NiCrAIY.

Diffusion of Ti, Cr and Ni into the ZrO 2 from the NiCrAIY is also evident.
Microprobe analyses were also performed on failed air-sprayed Ni-

22Cr--10Al-1Y and air sprayed 12 w/o Y203-ZrO2 coatings on Rene'80 sub-
strates. In contrast to the preceding LP/HV ease step-scan analyses of this

coating system indicated there was almost no interdiffusion of NiCrA1Y

•, and Rene'80 (Figure 22), probably due to the oxide layer.

3.3.4.3 Characterization After 658 Furnace Cycles.

Optical micrography as well as microprobe measurements were made

on Rene'80 substrates coated on two sides with different TBC variations,

and exposed to the furnace cycle described in 3.3.1. Figure 18 shows

optical micrographs after cyclic oxidation of two sides of a representative

specimen. Side No. 1 (upper micrograph) had an LP/HV-applied Ni-22C--

10AI-IY bond coating with a 24 w/o MgO-ZrO 2 eeramie coating that had

spalled during testing. Side No. 2 (lower micrograph) had the same

NiCrAIY coating as Side No. 1 but had an 8 w/o Y203-ZrO2 ceramic top
coat. There were more platelet pret-ipitates in the Rene'80 on Side No. 1

after cyclic oxidation than occurred on Side No. 2. The precipitates are a

result of Al diffusion from the NiCrAIY into the Rene'80. The lack of

precipitates in the Rene'80 of Side No. 2 suggests that less Al diffusion had

occurred, presumably because of the greater amount of oxides seen at the

NiCrAIY/Rene'80 interface. Since interdiffusion of Rene'80 and NiCrAIY

may be life-limiting for TBC systems, the composition of the oxides at the

Rene'80/NiCrAIY interface was investigated.

Figures 23 and 24 show elemental x-ray density maps of Al, Ti, Co,

Ni, and Cr for Sides No. 1 and No. 2, respectively. According to Figure 23,

the precipitates in the Rene'80 of Side No. 1 are rich in Cr and defieient in

Ni. More detailed elemental step-scan analyses showed that the Cr-rieh

platelet precipitates are surrounded by an Al-rieh layer. The Al x-ray

density maps of Figures 23 and 24 elearly show in both eases that the phase

at the Rene'80/NiCrAIY interfaee is rich in Al, presumably as AI203

: and/or a NiAI204 solid solution. The elemental x=ray density maps also

suggest that a Ti-rieh phase, probably TiO2, had formed at the Rene'80/

NiCrAIY interfaee for Side No. 1, but not for Side No. 2. The AI203 would

slow the AI diffusion into the Rene'80.
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An elementalstep-scancan analysiswas performedon Side No. 2 to

} examine ingreaterdetailtheinterdiffusionof Rene'80,NiCrAIY and 8 w/o :

Y203--ZrO2ceramic. Figure 25 shows that there are six distinctcom-

_, positionalregionsfor the Rene'80/TBC system afterlong-timeexposureto

an oxidizingenvironment. Region No. I was originallyRene'80but after

._ exposure,has interdiffusedwith NiCrAIY to form phases richerin Cr and

:, AI.The second regionisan AI203 phaseat the Rene'80/NiCrAIYinterface.

At the NiCrAIY sideof the AI203 layer,thereappearsto be an enrichment

of Y. Region No. 3 was originallythe NiCrAIY phase but afterexposure

now hasabout3 w/o Ti and 5 w/o Co. ItsoriginalCr and AI concentrations

of 22 and 10 weight%, respectively,have fallentoabout I0 and 4.5weight

% respectively.Region No. 4 isa second Al203 layerwith some Y203

about I0 to 15 IJm thick. This layerprovidesoxidationprotectionto the

underlyingmetalliclayers.Region No. 5 isrichin Y and containssome Zr.

Itsexistencenear the AI203 layersuggeststhatY has a highaffinityfor

oxygen and subsequentlydiffuses"compositionallyuphill."The sixthregion

istheceramic coatingcontainingmainlyZr and about 6 weight% Y. This

is the only regionwhich compositionallyis unalteredafter exposure to

cyclicoxidationtests.

3.3.4.4Summary of MicroprobeResults

The microprobemeasurements have shown thatelevatedtemperature

LP/HV-applied NiCrAIY coatingsinterdiffusereadilywith the Rene'80

substrates,but thatlittlesubsequentoxidationof thesecoatingsoccurs.In

contrast,airsprayedNiCrAIY coatingsdo not readilyinterdiffusewiththe

Rene'80 substrate,but subsequent oxidationis quite severe. At the

reduced pressureconditionsof the LP/HV process,littleoxidationof

Rene'80to produceAI203 and TiO2 at the Rene'80/NiCrAIYinterfacewas

observed;but the oxidizingconditionsof the air process allows the

formationof theseoxidesduringNiCrAIY coating.Therefore,forbothair

sprayed and LP/HV-applied NiCrAIY coatings,the 12 wl Y203-ZrO2

coating adheres to an Al203 scale on the NiCrAIY, but not metallic

NiCrAIY. Afterlong-termexposuretheAl203 scaleappearstobe alloying
withtheoxidationof the Y intheNiCrAIY.
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3.4 Exposure Testing

3.4.1 Hot Corrosion

The hot-eorrosion test was intended to evaluate the durability of thermal-

barrier-eoated (TBC) specimens in a hot-gas-stream environment containing

sodium and sulphur.

" The test specimens were 0.318 em (0.125 in.) diameter Rene'80 pins

appro).imately 5 em (2 in.) long whieh had been rounded on one end. The TBC

eovered the rounded end a,ld extended to within 6 mm (0.25 in.) of the opposite

end. The coating had a nominal thickness of 0.13 mm (0.005 in.) NiCrAIY bond

coat and 0.25 mm (0.010 in.) Y203-ZrO2 eeramie top coat. The four coating

system variations investigated are listed in Table VII.

One of the BUSHIPS hot eorrosion rigs at the Aireraft Engine Group's

Thomson Laboratory in Lynn, Mass. was used to expose the test specimens. The

rig consists of a jet-fuel-fired burner, a specimen ehamber and a rotating

speeimen turntable whieh ean be inserted into and withdrawn from the ehamber.

Pin specimens are eemented into a por)us eeramie s_port which is plaeed on the

turntable. The pi_s stand vertieally as they are rotated in the Maeh 0.05 hot-gas

stream.

The coated pins were tested at a hot zone specimen temperature of 927°C

(1700OF) as measured by an optical pyrometer. An atomized, synthetic sea salt

solution was mixed with the burner inlet air in an amount to produee 5 ppm sea

salt in the hot-gas stream. In addition, the JPS fuel was doped with 0._% sulphur

and burned with a high (30:1) air-to-fuel ratio to insure eomplete eombustion of

the fuel and volatilization of the sulphur. The speeimens were withdrawn from

the rig, cooled to room temperature, and examined onee eaeh working day.

Specimens were tested for varying lengths of time in order to observe the

progression of any eorrosive attaek whieh may have oeeurred.

A total of nineteen speeimens were tested. The results are summarized in

Table VIII. The specimens after testing are shown in Figures 28a-d. Although

formation of visible eraeks in the eeramie layer was eonside_d failure, the

specimens were not necessarily removed from the test at that time. All

specimens with eoating B (12 w/o Y203-ZrO2, LP/HV) developed eraeks end

some dalamination in the ceramic layer during testing. Only two with costing

A (8 w/o Y203-ZrO2, LP/HV), one with coating C (8 w/o Y203-ZrO 2, Air) and

none with costing D (8 w/o Y203_ZrO2 ' Air, NASA) cracked. No eraeking or
• other damage was observed in the bond-cost layer,
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TABLE VlI

COATING VARIATIONS INVESTIGATED FOR EXPOSURE TESTING

Designation Compositions

_ A 8 w/o Y203-ZrO2 Ni-22Cr-IOAI-IY
(air-sprayed) (LP/HV process)

B 12 w/o Y203-Zr02 Ni-22Cr-lOAl-lY
(air process) (LP/HV process)

C 8 w/o Y203-ZrO2 Ni-22Cr-lOAl-IY
(air-sprayed) (air-sprayed)

D 12 w/o Y203-Zr02 Ni-18Cr-12Al-O.3Y
(NASA air-sprayed) (NASA air-sprayed)
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TABL[ VIII

HOT COkROSION TEST DATA

First Cracks Total

AEG # Observed (hours) Test Hours

A1 - _96

A2 - 362

A3 526 526

A4 226 292

A5 - 168

!' A6 - 0,P

B1 154 511

B2 296 362

B3 83 207

B4 148 526

B5 83 168

B6 - 0

C1 514 514

C2 - 362

C3 - 525

C4 - 526

Dl - 362

D2 - 511

D3 - 526

D4 - 526

D5 - 168

D6 - 0

A - 8 w/o Y203 - ZrO2, LP/HV-applied Ni-22Cr-10AI-IY

B - 12 w/o ¥203 - Zr02, LP/HV-applied Ni-22Cr-10Al-i¥

C - 8 w/o Y203 - ZrO2, .ir-surayed Ni-22Cr-IOAI-IY

D - 8 w/o Y203 - ZrO2, air-s}_rayed Ni-ISCr-12AI-0.3Y (NASA)

2?
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Control specimens which were present in the test rig showed "typical"

corrosive attack indicating that the test conditions were normal. For bare

Rene'80, the depth of corrosive attack is typieal]y about 0.25 mm (.010") in 500

hours under these test conditions.

Visual examination showed some corrosive attack of the uncoated Rene'80

•_ and some damage to the ceramic near the uncoated end of the pins. This damage
"4

:_ may have been due to a reaction between the Y203-ZrO 2 and the cement used to
hold the specimens in the ceramic support or to excessive condensation of

" corrosive salts near the base of the specimens. Many of the cracks which

developed in the ceramic coating appear to have originated in this region.

The corrosion te_: pins were embedded in epoxy, s_etioned, and mounted

for metallographie p31ishing. Typical microstruetures of specimens in the as-

coated condition and after testing are shown in Figure 27. Readily apparent in

the tested specimens are the formation of a distinct layer at the oxide/bond coat

interface and a diffusion zone extending into the Rene'80 substrate. Microprobe

analysis helped determine the compositional makeup of the mierostrueture.

Fi_,ures 28 through 31 show secondary electron images and elemental x-ray

density maps of specimens as-coated and after testing. The specimens in Fil_ures

28 and 29 have a bond coat applied by the LP/HV process, while the sveeimens in

Figures 30 and 31 have an air process sprayed bond coat. The layer formed at

the oxide/bond coat interface is shown to have a high A1 content and is believed

to be AI203. Aluminum oxide also appears to be present between NiCrAIY
particles in the air sprayed bond coats. This is the case even for the specimen in

the as-coated condition, and indicates that there was some oxidation of the bond

coat particles during the plasma spray application. In both of the tested

specimens, AI has diffused into the substrate while particles of hilzh Cr content

were precipitated near the bond coat/substrate interface. This effect is less

noticeable in the sl_ecimen with the air process bond coat, probaoly because of

an AI203 film around the metal oartieles acting as a diffusion inhibitor.
A schematic diagram identifies the various phases present in a typical

specimen with LP/HV applied bond coat after te._tinE (Figure 32). The Rene'80

substrate, which has a fine _'-_" structure after the normal alloy heat treat-

merit, forms a coarsened structure after time at temperature. Near the bond

coat/substrate interface, the diffusion of AI results in the formation of addi-

tional y' Ni3(AI,Ti) and lowers the solubility of Cr which precipitates as _ Cr.
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The bond coat also forms a coarse y-y' structure with occasional _ Cr

precipitates. The bond coat is primarily y(Ni solid solution) near the Y203-ZrO2

oxide coat due to loss of AI to the AI203 layer which form._ at the interface.
The effect of the structural and compositional changes taking place in the bond

coat and substrate (near the interface) on the durability of the TBC was not

apparent in the hot corrosion testing results.

Two specimens were ground and polished under kerosene to retain any salts

_ or sulphates which may have deposited on the specimens in the corrosive test

_" atmosphere. Subsequent examination on the microprobe _vealed no concen-

trations of Na or S in the specimens. This sut_ests that the test conditions may

not have been sufficient to cause measurable deposits of reactants to form on

the cemmie surface or in the surface-connected pores of the ceramic layer.

A failed specimen with coating system B (12 w/o Y203-ZrO2 , LP/HV) is

shown :n Figure 33a. All of the s_oecimens with this coating faile0 during the

test, yet there is nothing in the mierostructure to distinguish it from the 8 w/o

Y203-ZrO2 coatings. Perhaps the most significant finding wit.h regard to the 12

w/o Y203-ZrO2 specimens was that the as-coa'_ed specimen showed a circum-

ferential crack (see Figure 33b) near the eeramie/bor_ coat interface which

indicates that there may have been a problem in the coating proe_,s.

Although there was a significant difference in the number of cycles to

failure for each coating system variation, there was no evidence that corrosion

led to the failures since no evidence of eorroaive attack or penetration into the

ceramic was detected. The difference in _ives may be related more to the

ability to apply the coating satisfactorily to the small radius of curvature pin

specimens than to the test conditions.

3.4.2 C_/elie Oxidation

The Simulated Engine Thermal S.hock (SETS IO test rig located at the

Materials and Process Technolog T Laboratory in Evendale, Ohio was used to

impose two "engine simulative" conditions on thermal barrier eoeted specimens:

1) thermal cycling with rapid heatup and cooldown and 2) internal specimen

cooh._( to enhance the thermal gradient across the eoetinlr and substrate thick-

nesses.
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The test specimens were Rene'80 tubes 8.9 cm (3.5 in.) long with an inside

diameter of 1.3 cm (0.5 in.) and a wall thickness of 0.13 em (0.050 in.). The

specimens were coated with nominal thickness of 0.13 mm (0,005 in.) NiCrAIY-

" bond coat and 0.25 mm (0.010 in.) Y203-ZrO2 ceramic top eoat. The four
', coating system variations investigated are listed in Table VII.

The SETS 11rig (Figure 34) has a circular array of eight _ixed speci,nen

i stations. Six burner pairs and two air-blast jets are located on a rotatingD

platform inside the ring of specimen stations, and they are automatically indexed

to each specimen in a clockwise direction. Air and gas are fed to the burners

and air jets through slip seals in the central column. The tube specimens were

supported by welding a stainless-steel tube to one end of the coated tube and

then attaching stiff rods which were clamped in a support post. Cooling air was

fed to the stainless steel tube and up through the specimen. A small hole was

drilled through the b_ek side of the specimens to sight a radiation pyrometer on

the inside wall on the hot side of the tube. The ceramic surface temperature

was read by sighting a pyrometer on a Pyromark R spot painted on the surface on

one of the specimens. The two temperature readings gave a measure of the A'r.

A plot of AT vemus tube inside wall temperature is shown in Figure 35.

The SETS II test was run with an indexing interval of 7.5 rain. Thus, a test

cycle consisted of a rapid heatup and hold at high temperature for 45 mien

followed by a forced-air quench and hold near room tempe;ature for 15 rain. (At

the st-rt of the test, one of the burner stations was not operating properly and

so, the cycles were 37.5 min heating, 22.5 min eooling. The burner was changed

after 107 eyeles when the test was stopped to replace a failed speeimen,)

Temperature meastcements during the test showed the ceramie surface tem-

perature to be 1093 °C (2000 OF) with an inside wall temperature of 1050 °C

(1920 OF), giving a AT of 44 °C (fl0 OF). A total of fourteen specimens were

tested. The results are summarized in Table IX and show that coating systems A

(8 w/o Y203-ZrO2, LP/HV) and C (8 w/o Y203-ZrO2, air) to be comparable in
performance. These two systems are far superior to coating systems 8 (I 2 w/o

Y203-ZrO2, LP/HV) and D (8 w/o Y203-ZrO2, air). Figure 36 presents the
results in chart form. All of the coatings spalled in a similar manner. Typical

failed specimens are shown in Figure 37.

The tube spoeimens were embedded in epoxy, sectioned, and mounted fro'

metaUographic polishing. Visual examination of the sectioned tubes showed a
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. variationin tube wallthicknessfor most of the specimens. The wallthickness
4

was maximum on the sideof the tube which facedaway from the burnersduring

testingand minimum on the hot sideof thetube. Thisvariationisbelievedtobe

due toa repetit;vesequence of formationand spallationof oxidescaleon the

hotterportionsof theinsidesurfaceof Rene'80tubesduringthermalcycling.

, Typicalmicrostructuresof the cyclicoxidationspecimens in the region

_ where coatingspallationoccurredareshown inFigure38. The microstructureis

_ similarto that which was observedin the corrosionpinsand describedearlier.
D

Notabledifferencesarethe increasedextentof bond-coatoxidation,particularly

forthespecimen withan airsprayedbond coat. For thesame specimen,thereis

, an absence of _ Cr precipitatesat the bond coat/substrateinterface.Exami-

nationof allthe specimensrevealeda tendency forthe _ Cr precipitatesto go

back intosolutionwhen specimensremainedinthe testrigforan e,"tendedtime

(34to 85 h)afterspaUationof theceramiccoatinghad begun.

The variationin the microstructurearound the circumferenceat about 60°

intervalsisshown in Figures39 and 40. The change inseverityof thebond coat

oxidationdue to the circumferentialtemperature variationis particularly }

noticeable,as isthevariationof thebond coatand substratemicrostructures.

Examinationof the testspecimensdidnot revealany marked differencesin

the microstructurebetween correspondingcoatingsystems. Thissuggeststhat

thedifferencesin testperformancewere due to theapplicationprocessvariables
L

and or compositional differences.

3.4.3 Hot Corrosion and SETS il Exposure Test Conelusion

Conclusions. While the results of the hot-corrosion test could not be said

to have distinguishedbetween the coatingsystem varia_;onsbeing investigated,

they did demonstrate that substantial corrosion protection of the substrate alloy

,: was providedby the presenceof theTBC. Additionally,the compositionaland :

,' mierostructuralchanges indicatethat thisfactorshould be consideredin the

evaluation and design of future bond coat compositions due to the strong
interaction between the bond coat and the Rene'80 substrate (particularly with :

" the LP/HV bond coat).

_ The SETS lI cyclic testing showed the 8 w/o Y203-ZrO2 TBC to be more

_-_ durable than 12 w/o Y203-ZrO2 . For the two deposition processes used (air and
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LP/liV), the l,P/HV-applied bond coat resulted in a more consistent TBC life

; than the air-applied bond coating, but did not increase the average life of the

• <,oating. The exposure tests indicate that of the coating systems evaluated the

., best system is tile 8 w/o Y203-ZrO2 TBC with the LP/HV-applied bond eoat.
t
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_' 4.0 D_ ItjN AND ANALYS_
J,

Analytical studies were performed to assess the benefit to be derived by the

application of a the,'mal barrier co_ting ('FI1C) to ('I:6-50 stage 2 high-pressure turbine

(IIPT) blades. These studies considered the dependence of blade life, turbine

efficiency requirements and blade cooling air flow on eoating thickness, hi addition,

the effect of local spallation was a.,,-,_essed. This work led to reeommendations of a

coating configuration for. subsequent application of the TBC to stage 2 blades. Finally,

a refined ec_lted airfoil eoneept which more fully utilized the benefits of thermal

barrier coatings was designed and evaluated.

4.1 Iteat Transfer Analysis

A detailed thermal analysis of thermal barrier coated (TB(') CF6-50 stage 2 llPT

blades was done through General t'leetrie's Transient iteat-Transfer Program (1"HT-D).

The THT-l) is well suited for this analysis since the user ean accurately simulate

radiation, free convection, contact resistance, and coolant circuit temperatare

changes during a transient operatiol.

Figure 41 summarizes for the CF6-50 stage 2 liPT blade, the standard cooling

circuit, the blade, cooling geometry, eouling flow distribution, and design conditions. A

total of 0.9% of core flow is bled from compressor discharge for use in four circuits:

leading edge radial, two mid-chord serpentines, and a trailing edge radial. The

passages do not have turbulence promoters, and no surfaee film cooling is used.

The analysis of the stage 2 blade was conducted at the pitch section (at 50%

radial span) with a finite-element computer model. The uncoated blade pitehline

metal temperature distribution at the design point (Figure 42) was the base ease for

the heat transfer trade-off study in evaluating coating effects on blade temperatures.

To aeeount for the bond and ceramic coatings, additional nodal layers were added to

the existing grid configuration. Approximately, 10 heat transfer trade-off eases were

analyzed with three different cooling flows (100, 75, and 50%) and three eeramie

eoating thicknesses 0.25 mm (0.010 in.), 0.38 mm (0.015 in.), and 0.51 mm (0.020 in.).

A constant 0.10 mm (0.004 in.) bond-coat layer was used for all eases. The thermal

properties of the coatings whieh were available at the time of the temperature

analyses am given in Figures 43 and 44.

The aerodynamics and the gas-side heat-transfer coefficient distribution were

a_aumed to be unchanged by the presenee of the TBC. The gas-aide area, the base
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metal geometry and the coolant heat piekup were kept eonstant. (These assumptions

lead to a slight underestimation of the bulk metal temperature, but the magnitude of

the error is considered to have a minor effect on the accuracy of the present

parametric studies.)

Temperature distributions at the various nodal points were determined. These

were combined to provide measures of the average temperatures of the blade, bond

_ coats and ceramic layer. The temperature distribution for a stage 2 blade with a 0.25
II,

mm (0.010 in.) of ceramic and 10096 of the base coolant flow is shown in Figure 45.

For this ease, the average bulk metal temperature of the blade was reduced from 951

°C (1744 OF) to 919 °C (1687 OF) because of the presence of the TBC. Figure 2

summarizes analyses of the effects of ceramic coating thickness and blade cooling

flow variations on the blade bulk metal temperature. The greatest benefit from the

TBC is the potential reduction of cooling flow and the associated engine performance

gain.

Increasingceramic coatingthicknessreduces the average temperature of the

bond coat and bulk metal (Figure46). Variationsin the thermal conductivityof the

ceramic can resultfrom differencesin coatingcompositionand applicationmethods.

Figure46 can be used toshow theeffectof differentconduetivitiesbecauseat steady

statethethermal resistanceof thethermalbarrierisproportionalto thicknessdivided

by conductivity.

4.2 Transient Thermal Response Analysis

The thermal barrier coating not only reduces the bulk metal temperature but

also slows the transient response and changes the temperature distribution. The

response of a stage 2 blade with TBC to a transient cycle was calculated. The

transient cycle for the CF6-50 engine in Figure 47 shows that the aeeeleration is

severe (the speed inerease is from 6500 to 9400 RPM in just seven seconds) and the

required short term power requirement produces a high heat flux in the, blades. The

temperature response of the blades was analyzed for the airfoils left uncoated, coated

with 0,25 mm (.010 inch) of ceramic, and coated with .038 mm (.015 inch) of ceramic.

Figure 48 shows the response of the leading and trailing edge surfaces during the

acceleration portion of the cycle tot coated [0.25 mm (0.010 in.)] and uncoated blades.

The peak temperature gradients are significantly reduced by the presence of the TBC.

The severity of the thermal stress as indicated by the temperature difference AT

between the blade surface and the mean bulk temperature is significantly reduced at

the leading edge (LE) by the TBC. Also the time to reach the maximum AT is slightly
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longer, i.e. the TBC insulating effect provides thermal inertia. In approaching steady

state, both coated and uncoated blades respond in a parallel manner. Although

initially the relative response of uncoated blades at the trailing edge (TE) is analogous

to that at the LE, there is a cross-over of the AT plots as steady state is approached.

This is due to the fact that thc slcndcrness of the trailing e_ge portion does not allow

as efficient cooling as at the LB. Thus, although the TBC results in some temperature

reduction at the TE, it is not as great as for the blade as a whole. Hence Ar actually

_. increases over that for an uncoated airfoil.

The corresponding transient stress response of the metal substrate during the

same acceleration portion of the cycle is given in Figure 49, and the detailed transient

temperature distributions are found in Figures 50 and 51. In Figure 49 the edge stress

of the very hot TE is seen to be compressive, whereas the similarly hot LE is tensile.

This tension results from the combined centrifugal and thermal tilting or bending of

the blade plus the centrifugal loading. The TBC in the TE produces sufficient tt
temperature reduction to avoid the large excursion of the thermal compressive stress.

It is interesting to note that the selected thickness of 0.25 mm results in a peak

transient tensile stress at the TE, whereas an uncoated blade exDerienees a peak

transient compressive stress. Thus, an intermediate thickness could presumably

minimize the transient stress range in this region. This illustrates the kind of tailoring

that must be considered in the effective use of TBCs.

4.3 Mechanical Analyses

In conducting the mechanical analyses of the various coating system configura-

tions, the following assumptions were used:

(1) the life limiting span of the airfoil is the pitch section for both the coated i

and uncoated configuration; I

1

(2) no creep or plasticity occurs in the bond or ceramic layers;

(3) application of the bond and ceramic layers leaves them in an unstrained

(stress-free) condition after cooling to room temperature;

(4) material properties for the NiCrAIY bond layer and the ceramic outer

layer are referenced from NASA Report CR-135359 (Figures 43 and 44).

The heat transfer results of the eases shown earlier for the various thermal

barrier thicknesses and cooling flows in the stage 2 high-pressure turbine (HPT) blade

were analyzed the GE computer program Bucket Creep HI (BC nl) to determine

eombine._ mechanical and thermal stresses. The BC lU predicts time-dependent J
i
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localizedvaluesof stress,strain,and creep damage of cooled gas turbineairfoils

exposed tohigh-temperatureenvironments.

The uncoated(basecase)airfoilpitchsectionsteady-statestressesare shown in

Figure52;theblademechanicaland combined mechanicaland thermalstressesforthe

same airfoilwith a 0.25 mm (0.010in.)-thickthermal harriercoatingare shown in

Figure53. The stressesinthe metal substrate(Rene'80)materialare slightlygreater

_ because of the additionalweightof the bond coat and the ceramic layers.However,

_ even thoughstressesincreased,the rupturelifeinthe metal bladewas improved more
QI.

than tenfoldwith the additionof the TBC. This isexpected,sincethe bulk metal

temperaturewas reduced32 °C (57OF) from 951 °C (1744OF) to919 °C (1687°F).

The absolutevalues of the elasticstressesin the NiCrAIY bond layer are

generallysmallerthan forthe metal substrate,primarilybecauseof the low valueof

the Young's modulus of the bond layer at elevatedtemperatures. The computed

tensilestressesin theceramic layerare greaterthan in the bond coat. These higher

stre_es are due to the greaterthermal expansionof the metallicbond coat layer

relativetothatof theceramic outerlayer.Thisoccursinspiteof the higherceramic

temperaturebecause the ceramic expansioncoefficientisonlyabout two-thirdsthat

of the bond layer. However, note that thisresultisconditionedby the previously

statedassumptionthattheceramic isstress-freeunderroom temperatureconditions.

Additionalincreasesin coating thicknesswillfurtherlower the metal tem-

peratureand, inturn,improve bladerupturelife.Thus,stressruptureisnot limiting.

However, high-pressureturbinesare susceptibleto low-cyclefatigue(LCF) failures

relatedto transientthermal stresses.Therefore,to gain an understandingof the

effectof TBC on LCF, a simplifiedenginetransientstressanalysiswas conducted.

This transientelasticstressanalysiswas performed on the pitchsectionof the

CF6-50 stage2 HPT bladewith the enginecycleshown previouslyin Figure47. The

analysiswas conductedon both theuncoatedairfoiland on theairfoilcoatedwith 0.I0

mm (0.004in.)ofbond coatand 0.25mm (0.010in.)of ceramic.

The resultsrevealthatthe blade(Rene'80)LCF lifeimproved with the addition

of the thermalbarriercoating.The resultingstrainrangedistributionforthebladeis

shown in Figur,.,54, the strainlevelat the leadingedge (LE)has increasedduringthe

transientaccelerationforthe coatedairfoil.Thisincreasedstrainrange isdue to the

reduced differencein LE temperature versusthe blade bulk temperatureas shown

previously(Figure48). The lower AT induceslower compressivethermal stressesin

the LE, yieldinga largercombined mechanicaland thermal tensilestress.However,

the correspondingLCF lifeincreasesbecause of the reductionin bulk metal tern-
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peraturewhich increasesthe materialLCF strength. The trailingedge (TE) shows
¢

similarresults,with the coated blade being driven into tensionbecause of the

reductionin AT. In summary, the TBC has redistributedthe blade temperatures s

especiallyof the TE. Thisredistributionplusthe lesserthermalexpansionof the TE,

tiltsthe blade thermally,raisingthe LE strain. However, the lowering of the

temperatureat the LE issufficientto resultina net LCF lifeimprovement there.

Because the metal substrateshows improvements inboth LCF and rupturelife

"_ with theadditionof coatingto theblade,itappearsthatthepotentialof the thermal-

_" barrier-coated airfoil is limited only by the lifetime of the ceramic coat or of the

ceramic/metal bond.

i

4.4 SpaUation Studies

The preceding analyses have assumed that the bond and ceramic coatings remain

adherent to the metal substrate for the of the blade. Although it is not presently

possible to predict analytically exactly when and where local spalling failure of the

TBC might occur under engine conditions, the consequences of this type of failure

to the blade were determined. To examine the effects of partial coating loss on the

blade rupture life, four steady-state cases were studied (Figure 55L The studies for

these four cases indicate that, if partial coating loss occurs, the airfoil would have less

rupture life than the blade fully coated (Figure 56). Even so, the blade with partial

coating loss has more rupture life available than an uncoated airfoil.

For LCF evaluation, an engine transient analysis was conducted on the pitch

section of the blade with the assumption that leading and trailing edges had spalled the

ceramic and bond layers. An example of the temperatures calculated for the spalled

conditions is given in Figure 57. The major concern was that should the TBC spaU, the

now uncoated region would heat up closely approaching the original uncoated tem-

perature, while the remaining coated airfoil being significantly cooler would force

unacceptably large thermal strains in the spalled region. This worst case scenario was

shown to be unfounded, however. For the ease analyzed with LE and TE spaUed (see

Figure 57) LCF was reduced from the fully coated ease and even somewhat below the

original uncoated ease at the limiting TE point. However, the LCF life would be 70%

I of the uncoatedbladelife_hich ismore than adequate fora 1500 "C" cycleCF6-50enginetest(Sections5.3and 5.4). Bench testand then enginetestcorroborationis

. [ required, however

t
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4.5 TB___CPayoffs

To establishthe relatedenginebenefitsof the TBC coated airfoiland to aidin

selectingthecoatingconfigurationtobe run inan enginetest,threeparameterswere

examined to determine theireffectson enginespecificfuelconsumption(SFC): (1)

, coolingflow,(2)trailingedge blockage,and (3)surfacefinish.

Surfaceroughnesshas a largereffecton turbineperformance/efficiencythanTE

blockageeffects.Shouldthe initialsurfacefinishof 2 pm rms (polishedTBC surface)

deteriorateto 7.5 l_m rms, as a severelimitingcase,the SFC penaltywouldbe about

0.15%. Individual plots of these performance relationships are given in Figures 58

through 61.

One way tG take advantage of the thermal-barrier-coated airfoil is to reduce the

blade cooling flow while maintaining an equivalent rupture and low-cycle fatigue life

in relation to the uncoated configuration. The cooling flow could be reduced to about

50% of the original value and still maintain the bulk metal temperature of the

uncoated airfoil. Additionally, at this reduced cooling airflow condition, the calcu-

lated rupture life of the blade would be slightly greater than for the uncoated design.

This would yield a benefit in SFC of 0.32%.

The addition of TBC to existing blade designs, without modification to account

for the decreased throat area, would reduce the turbine efficiency causing an increase

in SFC. With the current configuration completely coated with 0.254 mm (0.010 in.) of

ceramic and 0.102 mm (0.004 in.) of bond coat, the SFC penalty would be only 0.048%

for the trailing edge blockage effects.

4.6 Conclusionsand Recommendations for Engine Test Blades

The presenee of a thermal barrier coating on the CF6-50 stage 2 HPT blade has

been shown through computer analysis to provide substantial benefit. This benefit can

be realized in two ways: l) the TBC reduces the average bulk metal temperature

which results in improved LCF and rupture life; 2) while maintaining the bulk metal

temperature at normal levels, the cooling air flow could be reduced by about 50%

which improves turbine efficiency and provides fuel savings. Additional analysis

showed that TBC spallation from critical areas of the blade had the potential to

reduce blade life and rupture life below that of an uncoated blade, even though 100%

coolaqt flow was maintained, due to the local hot spot and resulting higher strain in

the spaUed region.

In selecting a TBC blade design for further laboratory evaluation and engine

testing it was obvious that the present stage 2 blade would limit the manner in which

TBC ¢_uld be utilized to achieve the payoffs identified. The best payoff would require
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a blade which integratedTBC featuresfrom the initialdesignpoint. Thicknessand

TBC locationcould be integratedwith coolingpassagesand the internalcooling

schemes.

Withinthe constraintsof the currentsta_e 2 blade however the recommended

TBC configurationwas as follows: 0.I0-0.15mm (0.004-0.006in.)of NiCrAIY bond

coat and .25 mm (.010in.)of Y203-ZrO2 ceramic to[_coat over the entireairfoiland

platformsurfacesof the CF6-50 stage 2 HP£ blade (Fil_ure62) and with a 100% L

coolantflowwas recommended forlaboratoryevaluationand enginetesting.

4.7 RefinedCoated AirfoilConcept Based on MaterialsDevelopment I

If,for purposesof conceptualexploration,the restrictionof puttinga design I
i

immediately intoan actualengine for testcan be relaxed,itwould be desirableto i

contemplatehow to take maximum advantage of TBCs. Accordingly,designstudies _.

were undertakenwhich tookintoaccountthe resultsobtainedinthe parallelmaterials

developmentand evaluationeffortsdescribedinSection3.

Analyticalstudiesdescribedin the precedingsectionsindicatedthat with the

applicationof a TBC to the CF6-50 stage 2 HPT blade,the coolantflow could be

reduced to about 50% of the metal blade design level while maintainingmetal

substratelivesand temperaturesequivalenttothe uncoatedblade. Figure63 presents

a comparison of the detailedtemperature distributionsat the pitch sectionof the

stage2 bladefortheuncoatedairfoil,coatedairfoilwith 100% flow,and coatedblade

with 50% flow. Itisnoteworthythatthe metal temperaturesin the trailingedge are

relativelyunaffectedby the applicationof the TBC to thisregioneven when the

coolingairismaintainedat 100% flow.

From laboratoryfurnaceteststhe effectsof temperatureon coatinglifewas

investigated.TBCs exposed to a maximum temperatureof I000°C (1832OF) lasted

about 10 timeslongerthan thosethathad been heateu to II00°C (2012OF). At the

lower temperature,the magnitude of observed furnace lifetimessubstantiallyex-

ceeded the durationof theplannedenginetests.However,becauseof the more severe

conditions in an actual engine, a design specification of 982 °C (1800 OF) for the

allowable maximum temperature of the TBC/metal interface was tentatively selected.

The calculatedtemperaturesforthe trailingedge sectionsgivenin Figure63 already

exceeded this design temperature limit.

Two studies were undertaken to overcome thi._ lin_itation. The objective of one

study was to determine the best coating eonfignration with a CF6-50 ,_roduetion blade

assuming the bond-coot design temperature limit. The other study was to redesign the
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. CF6-50 stage 2 HPT blade with the thermal barrier coating integrated into a totally

new design.

4.7.1 Study I: Best Present Blade Configuration with 982 °C (!800 °F) Bond

Coat Limitation

. This concept, based on the present CF6-50 stage 2 HPT production blade, is

_ directed at minimizing the coolant flow, satisi'ying the dual requirements of 1)

_' maintaining present blade 1,fe and 2) holding the NiCrAIY temperature below the

assumed 982 °C (1800 OF) limit. The result of this study (Figure 64), indicates

that, except at the t:ailing edge region, the airfoil would be fully coated with

0.51 mm TBC. For this TBC design configuration, the air cooling flow could be

reduced to 65% of the uncoated design flow. Figure 65 gives the temperature

distribution for this "improved' TBC configuration. Since in this design the

trailing edge is not coated with TBC, there is no reduction in turbine efficiency

because of trailing edge blockage.

4.7.2 Study I1: Advanced Blade Configuration with TBC

This effort was aimed at conceiving an improved blade configuration which

would derive maxirl,,m, benefit from the TBC in terms of reduced airfoil coolant

flow. The basic parameters used in deriving this configuration are as follows:

(1) airfoil contour rem._i:,_ unchanged from the uncoated design;

(2) mass o_' the blP de is reduced to achieve a quick bulk temperature

response which diminishes transient gradients between bulk and

leading _.nd trailing edges;

(3) bond coat temperature is held to the assumed design limit of 982 °C

(I800 °F);

(4) temperature differences between bulk and trailing edge are main-

rained or reduced relatwe to the uncoated design.

Since the benefits of thermal barrier coating are greatest in regions of

high heat flux, the optimum blade concept utilized impingement baffles and

turbulence promoters to increase the convection coolant coefficients. In

addition, knowing that the metal substrate at the blade trailing edge has higher

temperature capabilities than the assumed bond coat limit, the trailing edge is

; designed to be uncoated. However, in order to reduce the difference in the bulk

temperature and trailing edge temperature for the TBC design, the majority of

the coolant air would be used as film eoolJng through a row of holes on the

#
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pressure-side surface. To match the gas stream flow path radial temperature

profile, these film cooling holes would only be needed to cool the hottest seetion

of the blade trailing edge between the 30 and 7006 airfoil span.

- With this type of advaneed TBC cooling design eoneept (Figure 66) the

coolant air flow could be reduced to about 55% of the base uncoated blade. If a

higher bond coat temperature capability were issumed -1038 °C (1900 OF), the

blade could be fully coated which would result in still lower coolant flow and

" higher benefit.

4.7.3 Benefits of Refined Conceptual Designs

The refined coated airfoil studies demonstrated the possibility of improving

the thermal barrier coating benefit over that obtained for a fully coated, standard

blade. A comparison of this improvement, in terms of specific fuel consumption

(SFC), is shown in Table X. The benefit obtained was maximized by the optimum

blade design with TBC developed in Study II.
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TABLE X

Payoff Comparisons for the CF6-50 Stage 2 HPT Blade
2_
P

With Various TBC Configurations

Configuration Coolant Flow Coating Thickness 8 SFC*

Standard Blade

Uncoated 100% 0 0

_ Standard Blade**

Fully Coated 100% .254mm(.010 in.) +0.048%

Standard Blade **

Fully Coated 50% .254mm(.010 in.) -0.322%

Study I: Fully Coated

Except Trailing Edge 65% .381mm(.015 in.) -0.260%

Study II: New DesiRn Fully

Coated Except Trailing Edge 55% .381m_(.015 in.) -0.370%

* Negative values are improvements, positive values are penalties

** Bond coat temperature exceeds the assumed design limit of 982°C (1800°F)

at the alrfoil trailing edge.
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5.0 COATED TURBINE BLADE LEADING TO ENGINE TESTS

This portion of the work was undertaken (l) to implemen" the recommendations

that emerged from the materials development and eharaeterization efforts, (2) to

, adapt the developed eoating teehniques to the present complex geometry of blades, (3)

te develop adequate coating process control and reliability to satisfy engine test

requirements, (4) to provide representative blades for conducting the neees.=ary be_:eh4.
: tests to qualify coated blades for engine testing, (5) to test coated blades in an actual
6

engine and, (6) to evaluate their performance.

The CF6-50 stage 2 HPT blade uniformly coated with TBC on the airfoil and the

flow path surfaces of the platform was used to evaluate the coatings. The two plasma

spray proeesses (air and LPIHV) were re-evaluated for the blade geometry because of

the obvious differences that would result in thermal history compared with coupon

preparation. It was also necessary to determine whether the aluminide coating

standard on engine-quality blades would affect the TBC deposition proeess or behavior.

Twenty engine-quality blades were coated. Most were used in the required pre-engine

qualifieation tests. Six blades were evaluated on a pigls .back basis in a CF6-50 test

engine. During the engine exposure the coatings remained adherent, although with

indieation of loealized foreign object damage at the leading edge. The test run was

terminated after _26 eyeles for reasor=snot related to these blades.

5.1 Plasma Spray Proeess Development for Blades

The requirement was to deposit uniform and durable eoatings on the stage 2

blades at a thickness of 0.10 to 0.15 him (0.004 to .006") for the NiCrAIY layer and

0.25 mm (0.010") for the oxide coating. Both the air and the LP/HV processes were

investigated for applying the metal layer; only the air process was used for the oxide.

5.1.1 Air Process

Prior to coating, all blades were grit-bla=ted and ultrasonically cleaned and

degreased. The CF6-50 stage two HPT blades were manually eoated in air with

Ni-22Cr-10AI-1Y and 8 _/o Y203-ZrO2. The coatings were applied by spraying

overlapping bands of eoating on the airfoil. A single band was sprayed by passing

the gun from the. tip to the root radius of the airfoil. The blade was rotated so

that deposition was alwevs perpendieula_" to the substrate. Overlapping bands

were applied repeatedly until the desired thiekness was obtained. The platform

was coated at an angle of about 30 ° from the perpendicular.

44

1982002167-054



5.1.2LD/HV Process

Six CF6-50 stage 2 HPT bladeswere coated with Ni-22Cr-10AI-IYusing

the LP/HV depositionprocess. A microprocessorcontrolledthe gun motion,

which consistedof |_near,horizontal,and verticalmovements along with a

rotatim '_rgular)movement ofthegun was used. Inaddition,thebladewas also

rotated.

A typical coating run consisted of airfoil heatin,',, cleaning, and coating

procedures. Prior to coating, all blades were grit-blasted and ultrasonically

b cleaned and degreased. At the start of a run, the airfoil was preheated to about

1000 °C in the plasma arc. Oxides which may have formed were removed with

the reverse transfer arc process prior to the final coating process.

After coating, one of the NiCrAlY-coated blades was sectioned at the

airfoil, pla:form, and root radius areas for metaUographic examir.Rtion (Figure

67). Table Xl lists the microscopically measured NiCrAIY coating thicknesses at

various locations on the airfoil sections. The variat!on in the NiCrAIY was close

to the specified tolerance of 0.10 to 0.15 mm. The only area where the NiCrAIY

thickness deviated from these values was at the pressure-side root radius area.

Figure 68 shows micrographs of the NiCrAIY coating. This figure shows an

absence of oxide inclusions in the NiCrAt_'. The porosity was observed to be low

at the airfoil sections but was slightly greater at the platform _nd root radius

areas of the airfoil. These trends are attributable to the difficulty in applying

NiCrAIY uniformly and densely oil complex geometries with high radii of

curvature.

5.2 Studies Relevant to Aluminide Coating on the Blades

The CF6-50 _:age--two HPT blades are Rene'80 alloy. The hot-oxidatioe

resistance of the Rene'80 is ennanced by the use of an aluminide environmental :-

coating in which NiAl is the dominant phase. For the work described in chapter 4 the

TBC variations investigated were applied to non-aluminided substrates. However, in

an engine consideration was given to insure a fail-safe mode of operation of a blade in

the event of los/ng the TBC protection. Therefore, blades were given an aluminide

costing befoce the TBC was applied. A cyclic furnace test was developed to evaluate

the lifetimes of TBCs on the alurnini0e coated CF6-50 stage 2 HPT blade_ and tc

evaluate any airfoil geometry effects on TBC lifetimes. This test was performed

simultaneously on two blades and consisted of a 5 min heatup to II00 °C, a 40 rnin

hold at I!00 °C, followed by a 15 rnin air blast oooldown. Blades were rapidly
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TABLE XI

_ NiCrAIY THICKNESS (mm) DEPOSITED ON CF6-50 STAGE TWO HPTBLADE USING LP/HV DEPOSITION PROCESS

Airfoil Section

Tip Center Root

Leading Ldge 0.12 0.09 0.09

Suction Side 0.15 0.I05 0.09

Trailing Edge 0,135 0.14 i 0.15

PrEssure Side 0.135 O.ll 0.I05

Root Radius and Platform

Suction Side

Platform 0.135

Root Radius 0.14

Pressure Side

Platform 0.14

Root Radius 0.225
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quenched during the 15 ,nin eooldown by blowing high-pre_ure air through the internal

,o cooling passages. Table XII sumnlarizes the types, numbers, and lifetimes of tile

coated blades which were cyclic furnace tested. A description of ea,"h test series is

given below.

5.2.1 Air-Deposited NiCrAIY

5.2.1.1Uncoated Blades. To get baselinedata, one blade was not

: aluminided.Th;sblade was coated with NiCrAIY and 8 w/o Y203-ZrO2

with theproceduresdescribedabove fortheairdepositionprocessand sub-

jectedto cyclicfurnacetesting.The coatingappearedadherentuntilthe

148th hourlycycle, when a small I era-diameterpatch of ceramic had

spalledfrom the convex sideof the airfoil.The centerof the spalledarea

was locatedabout 1.5 em behind the leadingedge and I cm above the

pi_itform.Loss of ceramic alsooccurredon about 20q6 of the platform

sectionof the blade. Spallationwas noted to occur always at lhe bond

coat/ceramic interface.

5.2.1.2 Aluminide Coated Blades. For these tests four CF6-50 stage 2

blades (aluminide coated) were used. The blades were coated with

NiCrAIY and ceramic in air by the procedures described earlier. Micro-

graphs verified that the aluminide coating was not removed by the grit-

blasting eieaning step. It is noteworthy that during the NiCrAIY de-

position, two of the blades suffered NiCrAIY spallation while the ether two

were coated without problems. NiCrAIY spallation had not been previously

encountered when coating non-aluminided coated substrates and is probably

a result of NiAl oxidation during coating. The two blades with spalled

NiCrAIY were ,,;tripped of NiCrAIY and reproeessed without further

problem.

Two blades were initially exposed to the cyclic furnace test

described above. After about 24 cycles of testing, loss of coating was

evident on the platform of both blades. Not until 168 hr of testing was

further spallat!on deteeted, this time ¢m the suction (eonvex) aide of the

airfoil of one blade. The coating separation appeared to have initiated at

the airfoil tip and proceeded down about two-thir_ the length of the

suction aide of the airfoil. Figure 89 is a photograph of the two airfoils

after 188 furnace eyeles. The TBCs had a mixed failure mode with

spallation at the aluminide NiCrAIY interface near _.he trailing edge, and
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TABLE XII

SUMMARY OF CYCLIC FURNACF TESTS OF
CF6-50 STAGE TWO HPT BLADES

:" (Aluminide Coated)

_" Cycles to Cause
- # Blades Spallation fromTested

AirfoiI

0.15 mmAir-deposited NiCrAiY 1 148

8 w/o Y203-Zr02 on uncoated Ren_ 80

0.15 mm Air-deposited NiCrAIY 4 (a) 168
0.25 mm8 w/o Y203-Zr02 (b) 168

on NiAI coated Ren_ 80 (c) 148
(d) 148

-r ............

0.15 mmLP/HV-deposited NiCrAIY 1 193
0.25 mm8 w/o Y203-Zr02

on uncoated Rene°80

0.15 mmLP/HV-deposited NiCrAIY 1 193
0.2_ mm 8 w/o Y203-Zr02
on NiAl coated Ren_ 80

48

i

1982002167-058



\

; failure near the ceramie/NiC.?.lY interface towards the leading edge. The

spallation at the platform occurred at the aluminide/NiCrAlY interface.

(In our previous tests on non-aluminided Rene'80 coupons, coating spalla-

tion always occurred at the eeramic/NiCrAIY interface.)

A second pair of blades was tested under identical experimental

conditions to eonfir,n the first test. After 148 furnace cycles, the TBC on

; one blade developed cracks on the trailing edge. 'resting was terminated

r. afterI_0 cycleswhen both bladeslostabout 50% of theircoatingollthe

suctionside. The failureoccurredby peelingon one blade(Figure70c)and

by spallationon the other blade(Figure70a). There was only a minimal

lossof coatingfrom thepressuresideof one blade(Figure70b)and no l(xss

of coatingfrom the platformsof eitherblade. In allcases spallation

occurredat the aluminide/NiCrAIYinterface,as evidencedby tiledark,

oxidizedNiCrAIY adheringto the ceramic which had popped from the

airfoil(Figure70a). Hov,-ver,in some areas the more common mode of

failurebetween theceramic and bond coatlayersoccurred.

In order to determine the cause of spallationat the aluminide/

NiCrAIY interface,the tipof one airfoi,was sectionedand polished(right-

hand blade of Figures70a and 70b). Figure71 shows micrographsof the

blade sections where (a) NiCrAIY and ceramic had spalled from the

aluminide surface, (b) NiCrAIY is just parting from the aluminide surface,

(e) 8 w/o Y203-ZrO2 spalled from the NiCrAIY, and (d) no spallation of any

coating is occurring. In all eases there is some internal oxidation of the

remaining NiCrAIY and an oxide layer (presumably Al203) at the alumi-

nide/NiCrAIY Rene'80 interface. This oxide may be responsible for the

poor adhesion of the NiCrAIY, i.e., the Al203 might weaken the bond at

the NiAI/NiCrAIY interface.

5.2.2LPIHV-DepositedNiCrAIY on Coated and Uncoated Blades

To testthe hypothesisthat AI203 formation on the aluminidecoating

might be responsibleforpoor NiCrAIY adhesionto NiAl,two bladeswere coated

with NiCrAIY by the LP/HV proeessand with eeramie by the airproeess. Only

one bladehad been givenan aluminideeoating.

The TBC bladeswere exposed to eyeliefurnaeetesting.The lifetimesof

the TBCs on these two bladeswere virtuallyidentical.Both ran 193 eyeles

before any spallation was observed. Figure 72 shows front and baek views of the
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blades after cyclic furnace testing. SpaUation was confined to the platform and

,_ a small area of the suction sideof the blade without the aluminide coating. For

, the aluminide-coated blade, spanation was somewhat more extensive and occur-

red on the leadinge_e, suction side,and on the platform. In allcases spallation

occurred at the NiCrAIY/ceramic interface,not at the NiAI/NiCrAIY interface.

5.2.3 Conclusions l_ardin_ Aluminiding

The LP/HV process has two possibleadvantages over the air _)rocessfor

_ depositionof NiCrAIY on aluminided Rene'80. The LP/HV process isperformed

under low pressure, which reduces the formation of oxides. Furthermore, the

reverse transfer arc capabilityassociated with the LP/HV process can clean

away any oxides formed immediately priorto depositionof NiCrAIY.

Inaddition,the following three major points summarize the resultsof the

cyclic furnace tests on aluminided and non-aluminided CF6-50 stage 2 blades

coated with TBCs:

(I) The lifetime of the Ni-22Cr-10AI-IY/8 w/o Y203-ZrO2 'FBC

system isnot significantlyaffected by the presence of an alumi-

nide coating on blades.

(2) Lifetimes of TBC systems in which the NiCrAIY isdepositedby the

LP/HV process are about 20% greater than when the NiCrAIY is

depositedby the airprocess.

(3) Spallation of TBCs in which the NiCrAIY and ceramic are de-

posited by the air process occurs at both the aluminide/NiCrAIY

interface,and the NiCrAIY/ceramic interface.

(4) SpaUation of TBCs in which the NiCrAIY was deposited by LP/HV

process occurred only at the NiCrAIY/ceramic interface.

5.3 Preparationof Blades for Enffineand Pre-Engine Tests

5.3.1 Coating Procedures and Controls

Thirty CF6-50 stage 2 HPT blades were plasma spray coated with Ni-22Cr-

10AI-IY with the LP/HV system. Twenty of the blades were engine-quality

blades used for high-cycle fatigue testingand engine testing. Four of the other

I0 blades were sentinelblades and were coated at evenly _aced intervalsduring

: the coating schedule. These war sectioned to cheek for coating thickness and

mierostruetural uniformity throughout the coating schedule. The remaining six

were used to set up and cheek out the LP/HV process at the start of coating

operations.
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. The thicknessof the NiCrAIY bond coating was determined at five

positionson the airfoilsurfaceby gauging the airfoilbeforeand aftercoating

with a mlcrometer array shown in Figure 73. The coatingthicknesseswere

measured at two positionson thepressureside,two positionson the stlctionside,

and one positionat the leadingedge of the airfoil.The measured weight and

thicknessof LP/HV-depositedNiCrAIY on the airfoilare given in Table XIII).

The reproducibility of the measurements is about 10 IJm. Somewhat more

._ NiCrAIY was depositedat the tipof the blade (Positions2 and 3) than at the

lower portions(Positions4 and 5) of the blade. The average NiCrAIY coating

thicknessesvariedfrom I00 to 200 lJm.The weightgain measured forthe blades

were consistentto within6% and averaged9.8-+0.6grams.

Afier the NiCrAIY coatingthicknessesand weightshad been measured,29

of the original30 bladeswere furthercoated with a nominal 280 sam of 8 w/o

Y203-ZrO2 ceramic with an air plasma spray gun, operated by hand. The

ceramicplasma upraypowder had a nominalsizingof -200 + 325 mesh.

Inordertoreduceaerodynamiclossesbecauseof surfaceroughness,theas-

sprayedceramic surfaceswere polishedwith a 280-gritaluminum-oxidepaper.

Thisprocedurereducedthesurfaceroughnessfrom 350 to 150 micro inches.Tlle

ceramic coatingthicknessesremeasuredafterpolishingshowed thatan average

of 30 IJm of ceramic was removed by thepolishing.TableXIIIliststhe weightof

ceramic coatingbefore and after polishing.The complete set of coated and

polishedCF6-50 stage2 HPT bladesisshown inFigure3.

Two of the remaining bladeswere sectionedand metallographicallypo-

lishedtocheck thecoatingthicknessmeasurements and todetermine the coating

microstructure.Typicalmicrostrueturesof these blade coatingsare given in

Figure74.

5.3.2QualificationTesting

The engine-qualitybladescoated were sent to AircraftEngine G. up at

Evendale,Ohio. The bladeswere givena cooling-airflowcheck,and one of the

blades was found to have one circuit with a flow rate below the allowable

minimum. All other blades had air flows which fell within the allowable limits.

Eight blades underwent component high-cycle fatigue testing. The blades

were heated by an induction coil with a suseeptor to 927 °C (1700 OF). The

temperature was measured with thermoeouples. On all blades, one thermoeouple

was attached to the urderside of the platform on the pressure side of the blade,
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TABLE XIII

LP/HV COATINGPROCESSRESULTS*
-" (Weight and Thickness :leasurements)

III In

| ZIRCONIUMOXIDE
IIi

_, NiCrAIY As Deposited After Polish
W.

I

Average weight (grams) 9.8 ± 0.6 - !2.6 ' 1.6

Avg. Thickness pm mils pm mils u mil

Middle, Leading Edge 130+20 5.1t 0.8 290+_30 II.4± I.I 250± 40 I0.0'

Upper, Pressure Side 190 .+.30 7.6+ 1.2 285± 30 II.2-+I.I 265t 40 10.4-_-

Upper, Suction Side 200'_25 8.0± l.O 300± 30 ll.8± l.l 285_ 30 ll.2"

Lower, Suction Side lO0±12 4.0+-0.5 275± 30 I0.8+-l.l 235± 35 9.3'

Lower, Pressure Side 120+-10 4.6± 3.4 280+-25 II.I+-0.9 235' 35 9.34

II I

* Combined Results of 24 Coatings. The indicated
variation represents the standard error.

r,

]
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._ and a second thermoeouple was inserted into the internal air passages of the

_.: blade through one of the cooling air inlet holes in the dovetail. This second

thermoeouple was removed once thermal equilibrium had been reached and

before high-cycle fatigue testing wasbegun.

High-cycle fatigue testing of the blades began with a blade tip deflection

of 2.03 mm (0.080 in.). A "staircase" method was used to determine the t;p

L deflection to be used on subsequent blades. If failure occurred at a given tip

deflection, the next blade was tested with 0.254 mm (0.010 in.) less deflection.

If failure did not occur (run out was 10? cycles), the next blade was run with

0.254 mm (0.010 in.) greater deflection. A summary of the HCF test results is

given in Table XIV. The mean tip deflection was found to be 1.91 mm (0.075 in.).

This was 13% lower than the mean value for stage 2 blades without a thermal

barrier coating; however, it was sufficiently high to qualify the blades to be run

in a test engine.

5.4 Engine Tests

Six TBC blades were delivered to CF6-50 Engine Systems for engine

testing.

5.4.1 Macroscopic Examination

The blades were assembled in a rotor, balanced, and tip ground. No

damage from the tip-grinding operation was observable. The blades were then

assembled in a ground based test engine which was scheduled to run for 1500 "C"

cycles. A typical "C" cycle is shown in Figure 75.

Examination of the blades after 16 hr of engine cheek-out (Figure 76)

revealed some coating damage on all of the TBC blades. The damage was

restricted to the upper third of the leading edge on the airfoils and appeared to

be small pock marks in the ceramic layer. The damage is believed to be due to

the impact of material lost by some developmental shrouds in the preceding stage of

the high-pressure turbine. Subsequent borc6eope examination of the blades

during the test showed no observuble progression of the damage along the leading

edge after 316 "C" cycles. However, examination after 476 "C" cycles (Figure

7'/) showed slight additional ceramic coating loss which may possibly be

attributed to further foreign ob|eet damage, but it was still limited to the upper

third of the leading edge. No eoating loss was observed at any other location on

the blades. The test was terminated after 626 "C" cycles because of engine

failure initiated in the preeeding stage of the high premure turbine.
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TABt.E XIV

HIGH CYCLE FATIGUE TEST RESULTS

Serial Number TipDeflection, (mm)..... Cycles to Fail

, H3447 2.03 run out

32517 2.29 1.6 x lO5

F5354 2.03 9.6 x lO6

M2906 1.78 1.8 x lO6

M8771 1.52 run out

F7988 1.78 run out

M8528 2.03 2.6 x lO5

L9019 1.78 run out
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; All of the second-stage blades (those with and without TBC) were severely

;, damaged when 'he test e. gine failed. Extensive loss of' blade material oeeurred

at the leading edge and blade tip. In addition, considerable impact damage was

noted on the suction side of the airfoils near the leading and trailing edges. The

eeramie coating losses _'rom the remaining airfoil surface were about 10 to 15%

on the pressure side (concave) and 20 to 3096 on the suction side (convex). The

NiCrAIY, however, remained intact over nearly all of the remaining airfoil
'_ surfaee.

5.4.2MierostrueturalExamination

The photomicrographin Figure 78 shows the coatingdamage whieh was

sustainedon thesuctionsideof the airfoilnear the leadingedge. Nearlyallof

the eeramie coatingisgone,and the NiCrAIY layerisfragmented and detached

becauseof impact damage. The surfacedepositinthismierographcovered allof

the pressuresideof the airfoiland about halfof the suctionside. The deposit

was analyzedtobe Rene'80. The coatingmierostrueturein the area which had

not sustainedimpaet damage isshown inFigur,"79. The eoatingisinverygood

conditionand shows no evidence of cracking or separation. The eoating

mierostruetureon the pressuresideof the airfoilnear the bladetipisshown in

Figure80. Here, the ceramic layerhad begun to separatefrom the bond coat

and, in fact,some coatingspaUationhad occurred in thisarea on allof the

engine-testedblades.

Folmatioa of an oxidelayerat theceramic/NiCrAIY interface,as had been

observedin laboratoryspecimens,was not generallyapparent. This isprobably

due to the relativelyshorttime (-166hr)at elevatedtemperatureinthe engine

test.However,insome areasneartheleadingand trailingedges,a thickeroxide

layerwas observedat the ceramic/NiCrAIY interface.These areasexperienced

much highertemperaturethan the bulkof the airfoilas evidencedby a variation

incolorof theRe_e'80depositon theTBC surface.

X-ray diffractionanalysisof theceramic coatingfrom an engine--runblade

showed the 8 w/o Y203-ZrO2 to be mostlytetragonal,with a small percentage

of the monoelinicphase.

5.4.3 Conelus/ons from Engine Test

Component high-cycle fatigue (HCF) testing showed that the presence of

the TBC on CF6-50 stage 2 HPT blades did not significantly degrade the HCF

properties when compared to the uncoated blade.
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• The impact damage which resultedinsome ceramic coatinglossduringtheearly
-%

, part of the enginetestemphasized the need to improve the foreignobjectdamage

resistance of TBCs if they are to be readily accepted as turbine component coatings.

Evaluation of the engine-run blades with thermal barrier coating was limited

_ because of extensive damage which resultedwhen the engine failed. Despitethe

abnormally severe conditions, the TBC remained adherent over most of the airfoil and

f platform, except in areas where severe imp_.t had occurred.

_'-,
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;" 6.0 CONCLUSIONS

1. The MCrAIY bond eoatings deposited by a low pressure plasma deposition system

give more reprodueible and better thermal barrier coating life eompared with

the ease of air plasma spraying.

2. The most durable thermel barrier coating system investigated in this study was;

an 8 w/o YzO3-ZrO2 eeramie coating deposited in air and a Ni-22Cr-10AI-1Y
bond layer deposited by a low pressure plasma deposition process.

3. Interdiffusion of the MCrA1Y layer and the substrate is substantial at elevated

temperatures and may be a major degradation meehanism leading to TBC failure.

4. The durability of thermal barrier coatings is limited by degradation of ac_h_ion

by environmental interaetions rather than by mechanical stress per se.

5. Design analysis shows undegraded thermal barrier eoatings ean withstand higher

compressive and tensile strains without spallation than would ever be expeeted

from a simple consideration of thermal expansion and typieal eeramie failure

strains.

6. Spallation of the thermal barrier eoating from both the leading and trailing edge

areas results in an inerease of transient thermal stresses. Sueh spallation, if it

occurs, has the potential to reduce blade life below that of an uneoated blade,

even though 100% coolant flow was maintained.

7. The eooling flow to a CF6-50 stage 2 HPT blade eoated with 0.25 mm (0.010 in.)

of thermal barrier coating can be reduced to about 50% of the original value and

still maintain the bulk metal temperature of the uncoated airfoil.

8. Thermal barrier coatings ean remain adherent when used in an engine. However,

the ability of TBCs to resist foreign object damage in service needs further

improvem en t.
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+ V.O I_COMMltNDATIONS

+.

_ Because thermal barrier coatings offer an important technology for improved

aireraft turbine engines, and in view of the insights gained in this work we offer the

followint_ reeommendations:

(1) The design/materials eommunity interface is needed to ,'"hieve maximum

_-. bene fit.

(2) Efforts should be undertaken to define a TBC failure law in terms of:

(e) the constituent materia_,s and their mierostruetures,

(bj the strains experieneed by the part,

(e) the temperature, service cycles, and environment to which the coat-

ings are exposed, and

(d) geometrie effects such as free edges, regions of high eurvature, etc.

(3) The effect of process variables should be more carefully defined, such as

the effects of powder variations and environment during applieation of the

eoatings.

(4) Bond-coat compositions offering even higher temper,_ture ,--apability and

longer life shouldbe investigated.

(5) Factors affecting end improving the impact resistance of the oxide layer

should be studied.
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Figure3 CF6-50 Stage 2 High Pressure Turbine Blades coated with 0.13 mm (0.005")

NiCrAIY and 0.25 turn(0.010")8 w/o Y203-ZrO2
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Figure 10 Elastie modulus of Ni-22Cr-10AI-1Y as a funetion
of temperature.
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Figure II Yield strength and duetllity of NI-22Cr-10AI-IY as
a function of temperature.
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Figure 17 Mlerographs of eeramle coatings over LP/HV-aPlDII_d
NI-IICr-IOAI-1Y e_tlngs on a 1.59 mm thlek Rene'll0

essllng before eyelle oxldstlon tesllng. (a) 8ide No. I -
24 w/o MgO-ZrO2 eemmle; (b) Side Nc_ 2 - S w/o
Y203-ZrO 2
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' Figur_ 18 Mierographs of LPIHV-applied Ni-22Cr--1OAI-IY coat-

ing on Rene'80 substrate after 858 cycles of furnace
: tests. (a) Side No. I - 24 w/o MfOZ_rO_ coating

initiated failure at 510 cycles, completely failed at 517
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Figure 20 (a) Secondary electron Imqe of LPlHV-applled Nl-
22Cr-10,_l-IY and air-applled 12 wlo YgO_-ZrO9 eost-
h(s on _ene_0 substrate before eyelie Tu&aee resting;
(b) AI x-rsy density map of area shown in (a).
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FiBure 22 _a) Secondary electron image of air sprayed Ni-22Cr-
10AI-1Y and air sprayed 12 w/o ¥_O_-ZPO_. eoati_ on
Rene'80 substrate after 67 hour]_ [.yeles" of furnace

Ox) testing with upper and lower temperature limits of 1100
and 140°C re ti

_.. _)_ , spee vely. Elemental x-ray density maps
_'_',4_ _, of (b) AI; (e) Ti; (d) Nii (e) Co; (f) Cr.
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Figure 23 (a) Secondary electron image of LP/HV-a li

+,.,omum or e.vette rUnla_ete+_,_J° _F_ZPu++aztee
density mapsot (b) AI_(e) Tit (d) Cr_(e) Co; (t) Hi.
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Figure 24 (a) Secondary electron image of LPIHV-appUed Ni- '
22Cr-10AI-IY and air sprayed 8 wlo Y_O.-ZrO. _tter
658 hours of eyelie furnace testing. Ele_mta_ x-ray
density maps of (b) AI| (e) Til (d) Cr; (e) Co; (f) Hi.
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Figure 26 After-test condition of hot corrosion test specimens

with eoeting systems ss follows; (a) A (8 w/o YoO_-

' '_/Zr4/,__ ZrO., LP/HV)I (b) B (12 w/o Y O ,-ZrO_, LP/HV)I ('e) "C• _ (8 w'lo Y203-ZrO2, air); ((I)D2i8 'wlo Y203-ZrO2, air,

"' i '_'uA /+r . 79
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• ,..k "",'.,'") '_" ° . "C_,_," j" • • ,_:. .'_53_.

a, b,
, tOO_m,

c, d,

Figure 2T Typieal hot corrosion test specimen mierostruetures.
(a) Specimen A6 - as-costed 8 w/o Y.O3-ZrO. with

, LP/HV applied NiCrAIYI (b) Specimen _4 - _m_ coat-
ing as AS after eomplet/ng 292 hours in the hot
corrosion rig; (e) 8peelmm D6 - as-costed 8 w/o Y_O_-
ZrO2 with eonventlonaliy applied NiCrAIY; (d) S0ecq-
men 1)4 - same eoatin_ as D6 after 526 hours in _.hehot
eorro_ionrig.
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C. d,

Figure 28 (a) Seeoncl_ry electron image of specimen A6 - as-
e_ted 8 wlo Y.O.-ZrO. ceramic _nd LP/HV applied
Ni.22C-10A]I-Iy _ I_CrAI_/. F.lemental x-ray density
rasps of (b) aluminum, (¢) ¢hromlum, and (d) niekeL

, 8I

_'i L _ --- - _ --- . - -
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Figure 30 (a) Seeo.dary electron image of specimen D6 - as.-
coated 8 w/o Y+O;z-ZrO o ceramic with sir sprsyed Ni-
18CP--/2AI-0.3Y" NICrA]Y. Elemental x-ray density
maps ot (b) aluminum, (e) ehromiurn, (d) nickel
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L__ I

C. d.

Figure 31 (a) _%eondary electron image of specimen D4 8 wlo
y,iO_-ZrO_ eeramle with air sprsyed Hi-' _.r-12Al-
0.3Y'HiCr_IY after SiS hours in hot eorr¢_xon testing.
El_mental x-ray density maps of (hi aiumlnum, (c)

. chromium, (d.I nickel
i
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. _' ¥2Ol-ZtC2

k1203

_" (Ni S.S.)

y, (li3&I)

' !_" Q Ik_d coat/S_bst_rate
o_<:_(_. 0 ° , . -- • O _ z.ter_Jc.

M2]C 6 IC

Figure 32 Schematic diagram of a typica} hot corrosion test
specimen with LP/HV bond coat after time at tem-
perature identifying the phases present in the micro-
structure.

(a) (b)

F/ffure 33 (a) Spet,!men B$ - 12 wlo Y_O_-ZrO_ eeramle with
LP/HV applied Ni-22Cr-10AI-IY" IqiC_AIY after IS8
hours in hot corrosion testi.,_. (b) Speelmen B6 - as-
coated 12 w/o Y _-ZrO_ eemmie with LP/HV applied
NI-22Cr-lOAI-_ _,ICrAIY.
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Specimen support, pos_

f
_ |ur'ner

Cool_nq 8_r 3et

Figur_ 34 Schematic diagram of M&PTL's SETS ILltest rig.

Insl4e V811 ?_pera_ure, °F

1500 ._ _00 1900 2100

t _00
tSC _ 25O

o _' ]150 c _"

SO / 10 _-
!

]'°
TtLbe _._oide t8811 ,'hmlPeratt_t'e °C

Figurt 35 Plot of the AT ot';viw_6 wh."-., varyinR tUbe insi:Je
waU temve ,r:,;., f_,_ a _mp_.e .peeimen in the SETS
II test rig.
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: 3o0

=u I

c

e I T
i

A • C D

Jr, - IIqY203-ZrO .. ] lion4 Coa'_

II - 12_Y2a$-grO 2, LP/HV •ond Coa'.

C - 11_¥2¢ -Z'C'O2, Cony. Ik_nd Co_

D o O_Y203 .cO 2. CO_.v. Bond CoAt.. NA.YA

Figure 36 Su,rmary of the eyelie oxickition test zestflts eomparir. C
the four coating systems. Frror bars ar_. ± _s.

'. 4 '_
e"

Figure 37 Cyclic nxidstion test specimens with coating system B
(12 w/o YgO_-Z LP/HV) showing the fei!_we mode

i which was2ylSiell'6?Y ' tll ,,,q)eeimens.
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Figure 38 (a) Specimen B2 - 12 w/o YgO_-ZrO_ eeramie with ,
LP/HV applied Ni-22Cr-10AI-1Y" NiCfA1Y after 178
one-hour eyeles in eyelie oxidation testing. (b) Speci-
men D3 - 8 w/o YoO_-ZrO9 eeramie air sprayed Ni-
18Cr-12AI-0.3Y NiC_rKIYafter 268 one-hour eyeles in
cyclic oxidation testing.

UKiGLNAL PAGE IS
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a. b.

lO0,_m
Q !

¢. d.

Figut_,_39 Specimen AI - 8 wlo YgO_-ZrOo ceramic with LP/HV
applied Ni-22Cr-10AI-1Y I_iCrAFYafter 250 one-hou_
cycles in eyelie oxidati_ _estlns. (a) Hot side; (b) 80v
toward cool side; (e) 120_ toward cool side; (d} cool
side.
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a. b.

lO0,_m

i

• . o,
r

I

, _ Figure 40 SDeeimen D3 - 8 wlo Y_O_-ZrO_ ceramic with air
:_, sprayed NL-18Cr-12AI-03Y'NI'CrAIY' after 268 one.-hou._
e cycles In eyelle oxidation _,estin_. (a) Hot side! (b) 60" ;

toward cool _ide; (e) 120V toward cool side; (d) cool
side.
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Temperature, OF
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Temperature, °C

Figure43 Variationof speeifieheat with temperature for the

NiCrAIY bond coat and Y203-ZrO2 top eoat. (Ref.
NASA Report CR-135359).

Temperature, OF
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' ' ' ' ' !7.0
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0.050 3.0
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FlCure 44 Variation of thermal eonduetivity with temperature for ,_

the NiCrAIY bond cost and Y203-ZrO2 top coat. (Ref.
NASA Report CR-135359).
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Ceramic Coating Thickness, inch.

0.005 0.0]_ 0.015 0.020 !

I I u v

98O

_ 1780

960 _ 1760

OU 1740 o_

940 _ ;

172o

_ m

u 1700

Z 920

1680

Bulk Metal 1660

900

I
0.I 0.2 0.3 0.4 0._

Ceramic Coating Thickness, mm

, Figure 46 The effect of the ceramic layer thickness on the
average material temperatures for a fully eoetled CF6-

, 50 second stage blade with 100% of standard coolant

flow.
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• 4O

150 LE, uncoated
20

0 0

TE, coated

I
-_°°7, - _i -20I ! 4 I t I --

4 8 12 16 20 24

Time, sec.

Figure 49 CF6-50 stage 2 HPT blade leading LE and trailing edge
TE stress response in the metal substrate during a
ground-idle-to-take-off acceleration with and without

__ 0.25 mm (0.010 in.) TBC. Note that TBC produces
increase of tensile stress at LE, but decrease of com-
pressive stress at steady stue.
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_, Key
Stress, MPa(KSI)

l_j Mechanical StressTotal Stress

d_1182,26,, 11126,183,
141 (20.4) 2 J 88 (12,7)

o
194(28.2) 0

181(26.2) 0

0

Figure 52 Computed mechanical and total strem within an un--
coated CF6-50 stage 2 HPT blade (pitch section) assum-
ing steady state, hot day take-off.
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S.S, Spall Region
'%

_..E.

Spall
Region

T.£. Spal1
Region

CASES STUDIED

'L.E. I T.E. L.E.&T.E. I S.S._tead_ Stat_ I X X X X

Transient Cycl_ i I X I

Figure55 Areas of spallationused for the spallationstudiesof
thermul barriercoated CF6-50 stage 2 HPT blades,
(L.E. is leading edge, T.E. trailing edge, and S.S. suction
side).
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Coolant Flow %

Figure 58 Reduction in specific fuel consumption (SFC) with
lowered percent coolant flow for the CF6-50 stage 2
HPT blade coated with 0.25 mm (0.010 inch) oxide.
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:" i I ,J
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Figure 59 Variation in bulk metal temperature with percent cool-
ant flow for a CF6-50 stage 2 HPT coated with 0.25
mm (0.010 inch) oxide.
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Surface Finish (_s) x 106 inch

I00 2UO 30O
1 I I
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•
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, I I l _._2 4 6 _ z
!

Surface Finish (rms), _icrometers

Figure 60 Effect on specific fuel consumption (SFC) of the sur- _
face finish of the CF6-50 stage 2 HPT blade, i

Trailing Edge Thickness Increase, inch 10.01 0.02 0.03 0.04 ,.

0.06

O.04
/

u 0.02 /= F •

L
I , I I l

0.2 0.4 0.6 0.8 1.0

Trailing Edge Thickness Increase, mm
2 r

i Figure 61 Effect on specific fuel consumption (SFC) of increasing
the thickness of the trailing edge of the CF6-50 stage 2

.., HPT blade.
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BLADEFULLYCOATF..D
0.254_ TIK

0.102- O.]52mnNICRALYBOND

Figure62 Recommended thermal barrier coating configuration
for the engine testing of TBCVdCF6=50 stage 2 HPT
blades.
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_ Gas :
1 -- -Surface

2 -Ceramic

3 -Bond Coat

4 -Interface

5 -Metal Substrate

i 1016 2 977 2 964

2 989 951 3 937

3 961 949 4 936

_ 4 959 937 5 924

952 6 912

1 ii023 5

2 I 994 6 936

3 I 965

4[ 963 0.381 nun Coating

2 954

31926
5 915

/ v
1 035 /% 4 951

2 001 5 943

3 965 1 1016

4 963 2 985 919

5 956 3 952 2

6 938 4 951 3
5 937 5 924

6 928

Uncoated T. .022

1043

5 1025 1042

' Average Temperatures

Bond Coat - 944 C 11732 F)

Ceramic - 976°C (1788°F)

Figure 65 Temperature distribution for the ':F6-50 stage 2 HPT
blade with the TBC eonfiguratiofl developed in Study !

- but retaining production blade substrate structure.
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TtqMxBONDCOAT"

Figure88 Advancedconcept design for a thermal barrier coated
CF6-50 stage 2 HPTblade developed in Study IL
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Ttp Region

,'_ Center Regton

...... Root Regton

Pletform Root Redtus Sect|on Used

for Colt|ng Thickness Measurement

Suct|on $tde

Front View I

Tretltng _ Leadtng
Edge -_ _ Edge

Pressure Stde

Pressure Stde Suctton Stde

Rootbdtus --_ F ._--Root Redtus

Pletfom _ Pletfom

i

f Filure 87 Disfrsm of blade areas cross sectioned where NICrAIY ,

i eoating thicknesseswere determined, i
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(a) 1_1

Figure69 Photograph of air _mye_ Ni-22Cr-10AI-1Y NiCrAIY
and air sprayed 8 w/o YoO_-ZrO_ on aluminided CF6-50

stage two b_e after'lSlJ ey_les of furnace testing
between 1100 C and 140 °. (a) Pressure side: (b)
suction side..
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• (c)

Figure 70 Photogrsph of air sprayed Ni-22Cr--10AI-1Y NICrAIY

snd air s_rayed S w/," Y20_ZrO_ on aluminided CF6-50
stage two bl_de after _61} eycqes of furnace testing
between 1100"C and 140"C. (s) Suction side of No. I
blade! (b) pressure side of No. I blade; (e) trailing edge

; view of No. 2 blade.
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"_ ° Ca) Cb)

C

Figure 72 CF6-50 stage 2 HPT turbine blades eoated with 0.13
mm Ni-22Cr-10AI-Y NiCrAIY deposited by th_ LP/HV
proeess and 0.25 mm of 8 w/o Y_O_-ZrOo deposited by
the air sprayed process. Right-/mild blatJe has alumi-
hide environmental eoating between Rez_e'80 and
NiCrAIY. Left-hand blade has no environmental coat-
ing. (a) Front view; (b) Rear view.
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Figure "/3 Micrometer array used for measuring coating thickness.
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Takeoff

Climb
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rottle Advance 3-5 second Throttle Move
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Motorln_
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Pigure 75 CF6-50 engine output versus time for endurance testing
"C" oyele.

#

120 /

"_,_j ......

1982002167-130



Figure76 Photographshowingdamage to leadingedge of thermal
barriereoatedbladeafter16 hoursof engineeheck-out.

¢

Figure 77 Photograph (taken through horoscope) showing extent of
demase to leading edge of thermal barrier eoated blade

, after 476 "C" eyeles.
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Figure 78 Engine-tested blade mierostuet.re on the suction side
near the leading edge where severe impaet damage had
occurred.

•_ _, ._ ." .'%__ .....,_"...._. _ Surface Deposit
Ceramic Layer

__ ' _,.v_,,''.... _, ,. ,,._,-_..... . Environmental Coating

%

_" ' ' Rene' 80 Substz_e
1oo um . 7"

Figure ?9 Engine-tested blade mierostrueture in the suction side
mid-chord region where very little Impact dsmage ha,1
occurred.
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- Ceramic Layer

T Bend Coat:

• : "" "'_ " Environmental CoatJna

100 lam Rene' SO Substrate

Figure 80 Engine-tested blade mierostrueture on the pressure side
near the blade tip.
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